Министерство образования и науки Украины
Донецкий Национальный университет
Курсовая работа
на тему: «Математические модели поведения производителей»
Выполнила: студентка II курса группа А
Полева Е. Л.
Проверила: Жилина Л. С.
Донецк-2008
Содержание
Определение математической модели
Общая схема принятия решений
Типы задач на оптимизацию
Модель фирмы
Задачи
Список литературы
Определение математической модели
Важным фактором, определяющим роль математики в различных приложениях, является возможность описания наиболее существенных черт и свойств изучаемого объекта на языке математических символов и соотношений. Такое описание принято называть математическим моделированием или формализацией.
Определение 1. Математической моделью реального объекта (явления) называется ее упрощенная, идеализированная схема, составленная с помощью математических символов и операций (соотношений).
Для построения математической модели конкретной экономической задачи (проблемы) рекомендуется выполнение следующей последовательности работ:
1. Определение известных и неизвестных величин, а также существующих условий и предпосылок (что дано и что требуется найти?);
2. Выявление важнейших факторов проблемы;
3. Выявление управляемых и неуправляемых параметров;
4. Математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными), исходя из содержания рассматриваемой задачи.
Известные параметры задачи относительно ее математической модели считаются внешними (заданными априори, т. е. до построения модели). В экономической литературе их называют экзогенными переменными. Значение же изначально неизвестных переменных вычисляются в результате исследования модели, поэтому по отношению к модели они считаются внутренними . В экономической литературе их называют эндогенными переменными.
С точки зрения назначения, можно выделить описательные модели и модели принятия решения. Описательные модели отражают содержание и основные свойства экономических объектов как таковых. С их помощью вычисляются числовые значения экономических факторов и показателей.
Модели принятия решения помогают найти наилучшие варианты плановых показателей или управленческих решений. Среди них наименее сложным являются оптимизационные модели, посредством которых описываются (моделируются) задачи типа планирования, а наиболее сложными —игровые модели, описывающие задачи конфликтного характера с учетом пересечения различных интересов. Эти модели отличаются от описательных тем, что в них имеется возможность выбора значений управляющих параметров (чего нет в описательных моделях).
Общая схема принятия решения
В математической экономике трудно переоценить роль моделей принятия решения. Наиболее частое применение находят те из них, которые сводят исходные задачи оптимального планирования производства, рационального распределения ограниченных ресурсов и эффективной деятельности экономических субъектов к экстремальным задачам, к задачам оптимального управления и к игровым задачам. Какова же общая структура таких моделей?
Любая задача принятия решения характеризуется наличием лица или лиц, преследующих определенные цели и имеющих для этого определенные возможности. Поэтому для выявления основных элементов модели принятия решения требуется ответить на следующие вопросы:
- кто принимает решение?
- каковы цели принятия решения ?
- в чем состоит принятие решения ?
- каково множество возможных вариантов достижения цели?
- при каких условиях происходит принятие решения?
Итак перед нами некая общая задача принятия решения. Для построения ее формальной схемы (модели) введем общие обозначения.
Буквой N обозначим множество всех, принимающих решение сторон. Пусть N={1,2,..., n}, т.е. имеется всего n участников идентифицируемых только номерами. Каждый элемент
Предположим, что множество всех допустимых решений (альтернатив, стратегий) каждого ЛПР предварительно изучено и описано математически (например, в виде системы неравенств). Обозначим их через X1 , X2 ,..., Xn. После этого процесс принятия решения всеми ЛПР сводится к следующему формальному акту: каждое ЛПР выбирает конкретный элемент из своего допустимого множества решений
Для оценки ситуации х с точки зрения преследуемых целей ЛПР строятся функции f1 ,..., fn(называемыми целевыми функциями или критериями качества), ставящие в соответствие каждой ситуации х числовые оценки f1(x),..., fn(x) (например, доходы фирм в ситуации х, или их затраты и т. д.). Тогда цель i-го ЛПР формализуется следующим образом: выбрать такое свое решение
Таким образом, общая схема задачи принятия решения может выглядеть так:
Конкретизируя элементы модели (1.6.1.), уточняя их характеристики и свойства, можно получть тот или иной конкретный класс моделей принятия решения. Так если в (1.6.1.) N состоит только из одного элемента (n=1), а все условия и предпосылки исходной реальной задачи можно описать в виде множества допустимых решений этого единственного ЛПР, то из (1.6.1.) получаем структуру оптимизационной (экстремальной) задачи: < Х, f >. В этой схеме ЛПР может рассматриваться как планирующих орган. С помощью данной схемы можно написать экстремальные задачи двух видов:
Если в экстремальной задаче явно учитывается фактор времени, то она называется задачей оптимального управления. Если n
Часто у ЛПР имеется не одна, а несколько целей. В этом случае из (1) получаем схему
Имеются классы задач принятия решения, получившие свои названия исходя из их назначения: системы массового обслуживания, задачи управления запасами, задачи сетевого и календарного планирования, теория надежности и др.
Если элементы модели (1) не зависят явно от времени, т. е. процесс принятия решения сводится к мгновенному акту выбора точки из заданного множества, то задача называется статической. В противном случае, т. е. когда принятие решения представляет собой многоэтапный дискретный или непрерывный во времени процесс, задача называется динамической. Если элементы модели (1) не содержат случайных величин и вероятностных явлений, то задача называется детерминированной, в противном случае — стохастической.
Типы задач на оптимизацию
Задача оптимального раскроя материала . Фирма изготавляет изделие состоящее из р деталей. Причем в одно изделие эти детали входят в количествах k1 ,..., kr . С этой целью производится раскрой m партий материала. В i-ой партии имеется bi единиц материала. Каждую единицу материала можно раскроить на детали n способами. При раскрое единицы i-ой партии j-м способом получается аijr деталей r-го вида. Требуется составить такой план раскроя материала, чтобы из них получить максимальное число изделий.
Транспортная задача. Имеется n поставщиков и m потребителей одного и того же продукта. Известны выпуск продукции у каждого поставщика и потребности в ней каждого потребителя, затраты на перевозки продукции от поставщика к потребителю. Требуется построить план транспортных перевозок с минимальными транспортными расходами с учетом предложения поставщиков и спроса потребителей.