Метод Дельфы дает возможность улучшить простое усреднение оценок экспертов.
Итак, теперь можно перечислить основные этапы подготовки и проведения экспертизы. Они включают:
· постановку задачи (проблемы), подлежащей экспертизе;
· подбор и выбор экспертов;
· выполнение экспертизы;
· получение обобщенной экспертной оценки;
· формирование и оформление результатов экспертизы.
Для примера представим название некоторых задач и проблем, в решении которых применяются методы экспертных оценок.
Это:
· распределение различных видов ресурсов с установлением приоритетности;
· установление номенклатуры подлежащих выполнению работ для достижения определенных целей в условиях ограничений по различным ресурсам;
· установление удельных ресурсных затрат на выполнение каких-либо работ, норм расхода материалов, нормативной трудоемкости изготовления изделия и его составляющих, стоимости отдельных этапов научно-исследовательских и опытно-конструкторских работ;
· установление возможных и допустимых границ колебания экономических показателей;
· установление параметров календарно-плановых нормативов, размеров партий запуска-выпуска изделий (деталей), величины заделов;
· определение перспективных направлений развития производственной системы, организационно-функциональной структуры;
· многокритериальная оценка деятельности предприятия;
· определение последовательности выполнения работ;
· научно-техническое и экономическое прогнозирование.
Процесс подготовки и проведения экспертизы сопряжен с процессом обработки огромных объемов информации с использованием громадного арсенала экономико-математических средств, методов и моделей. Поэтому получение более достоверных и надежных результатов экспертизы на современном этапе развития программно-технических средств не мыслим без привлечения в процесс экспертирования современных электронно-вычислительных комплексов.
Появление интерактивных режимов функционирования в программно-технологических комплексах дает прекрасную возможность оптимально сочетать неформализуемую интуитивную деятельность, присущую человеку, с неограниченными возможностями ЭВМ по решению формализованных задач.
В настоящее время разработан достаточно представительный набор программных средств типа экспертных и логико-расчетных систем (оболочек), позволяющих за приемлемо обозримое время настроиться на решаемый класс экспертных задач, доведя их до уровня “дружественного” общения между человеком и машиной. Существенной особенностью таких систем является так называемая база знаний, построенная на основе формализуемой части труда экспертов по определенным и конкретным проблемам. Некоторые из этих систем доведены до такого “совершенства”, что позволяют проводить экспертные оценки без участия экспертов-специалистов, которые могут привлекаться только в отдельных случаях, когда система начинает давать значительные сбои.
1. Понятие вероятности. Общие свойства вероятности.
2. Основные формулы теории вероятности.
3. Понятие случайной величины. Дискретная и непрерывная случайная величина.
4. Понятие распределения случайной величины. Основные законы распределения.
Изложение содержания данной темы в настоящей работе не представляется целесообразным, так как его можно без труда найти в широком круге литературных источников, в том числе тех, которые перечислены в данной работе.
1. Постановка общей задачи нелинейного программирования.
2. Метод множителей Лагранжа.
3. Выпуклое программирование.
4. Градиентные методы.
5. Метод штрафных функций.
Постановка общей задачи нелинейного программирования состоит в следующем. Определить максимум (минимум) значения функции:
f(x1, x2, ..., xn) (Б.1)
при условии, что переменные удовлетворяют соотношениям:
, (Б.2)где, f и gi некоторые известные функции, bi - заданные числа.
Решение этой задачи X * = (x1*, x2*, ..., xn*), удовлетворяющее (Б.1) и (Б.2), такое, что для любого другого X = (x1, x2, ..., xn), удовлетворяющего (Б.2), имеем:
f(x1*, x2*, ..., xn*) ³ f(x1, x2, ..., xn) - для задачи максимизации;
f(x1*, x2*, ..., xn*) £ f(x1, x2, ..., xn) - для задачи минимизации.
Соотношения (Б.2) называются системой ограничений. Условия неотрицательности переменных могут быть заданы непосредственно. В евклидовом пространстве E n (Б.2) определяет область допустимых решений поставленной задачи (в отличие от задач линейного программирования эта область может быть не выпуклой).
Если область допустимых решений определена, то нахождение решения задачи (Б.1)-(Б.2) сводится к определению такой точки этой области, через которую проходит гиперповерхность наивысшего (наинизшего) уровня: f(x1, x2, ..., xn) = h.
Эта точка может быть как на границе, так и внутри области.
Процесс решения задачи в геометрической интерпретации включает этапы:
· определение области допустимых решений, соответствующих (Б.2) (если она пуста, то решений задачи - нет);
· построение гиперповерхности f(x1, x2, ..., xn) = h;
· определение гиперповерхности наивысшего (наинизшего) уровня или установление неразрешимости задачи из-за неограниченности (Б.1) сверху (снизу) на множестве допустимых решений;
· нахождение точки области допустимых решений, через которую проходит гиперповерхность наивысшего (наинизшего) уровня и определение в ней значения (Б.1).
Общая постановка задачи состоит в нахождении максимума (минимума) функции: f(x1, x2, ..., xn) при условии: g(x1, x2,...,xn) = bi , i = 1, 2, ..., m.
Условия неотрицательности xj могут отсутствовать. Имеем задачу на условный экстремум - классическая задача оптимизации.
Задача решается следующим образом. Вводят набор переменных li (i = 1, 2, ..., m) - множителей Лагранжа и составляют функцию:
.Далее определяют частные производные:
(j = 1, 2, ..., n) и , (i = 1, 2, ..., m).На следующем шаге рассматривают систему n + m уравнений:
Любое решение этой системы определяет точку
, в которой может иметь место экстремум функции f (x1, x2, ..., xn). Таким образом, разрешив построенную систему, определяют все точки, в которых функция f может иметь экстремум. Дальнейшее исследование идет как в случае безусловного экстремума.Итак, этапы решения задачи нелинейного программирования методом множителей Лагранжа заключаются в следующем:
1.Составляют функцию Лагранжа.
2.Находят частные производные функции Лагранжа по xj и li и приравнивают их 0.
3.Решая полученную систему, находят точки, в которых целевая функция задачи может иметь экстремум.
4.Среди точек, подозрительных на экстремум, находят точки, в которых достигается экстремум, вычисляют значения f(x1, x2,...,xn) в этих точках и среди них выбирают те, которые удовлетворяют условиям задачи.
Суть общей постановки задачи состоит в определении максимального (минимального) значения функции:
f(x1, x2, ...,xn)
при условиях:
gi(x1, x2, ..., xn) £ bi (i = 1, 2, ..., m), xj ³ 0 (j = 1, 2, ..., n).
Универсальных методов решения поставленной задачи в общем виде не существует. Однако, при определенных ограничениях решение этой задачи может быть найдено.
Несколько определений.
Функция f(x1, x2, ..., xn) на выпуклом множестве X называется выпуклой, если для любых двух точек X2 и X1 из X и любого 0 £ l £ 1, выполнено соотношение:
f[lX2 + (1 - l)X1] ³ lf(X2) + (1 - l)f(X1).
Множество допустимых решений удовлетворяет условию регулярности, если существует хотя бы одна точка Xi этой области такая, что gk(Xi) < bk (k = 1, 2, ..., m).
Задача выпуклого программирования возникает, если функция f является вогнутой (выпуклой), а gi - выпуклы.
Любой локальный максимум (минимум) является глобальным максимумом (минимумом). Наиболее характерным методом решения задач выпуклого программирования является метод множителей Лагранжа. При этом точка (X0, L0) называется седловой точкой функции Лагранжа, если:
F(x1, x2, ..., xn,
) £ F( )££ F(
), для всех xj ³ 0 и li ³ 0.