Смекни!
smekni.com

Математические методы экономических исследований (стр. 10 из 14)

(начальная (число требований, обслужен- (число поступ-

очередь) - ных к моменту времени t) + лений)

r -

+
.

Таким образом, время ожидания W(t) для рассматриваемого требования может быть выражено формулой:

. (10.4)

Рассмотрим i-е требование в начальной очереди (0 <i £ r), тогда впереди его будет (i - 1) требований, для обслуживания которых потребуется (i - 1)b единиц времени.

Обобщая полученные результаты относительно функции W(t), получим для нее следующее выражение:

,

где i - номер i-го требования в начальной очереди; требования поступают в моменты времени a, 2a, ...; b = na (n = 1, 2, ...).


Тема 11. Управление запасами

1. Понятие задачи управления запасами.

2. Основная задача управления запасами.

3. Управление запасами в условиях производственных поставок.

4. Управление запасами в условиях дефицита.

Краткое содержание темы

Класс задач по управлению запасами является достаточно специфичным как по разнообразию постановки задач, так и по методам их решения. Здесь успешно применяются методы линейного и динамического программирования, методы теории массового обслуживания и многие другие. В данном разделе рассматриваются простые методы математического анализа для решения задач управления запасами.

Предприятия в процессе своей деятельности делают различные запасы. Запасы - это совокупность предметов (товаров), представляющих собой временно неиспользуемые экономические ресурсы.

Причины создания запасов могут быть различными.

Если в нужный момент производства необходимые материалы или товары не поступают от поставщиков и их нет на складе в запасе (т.е. имеет место дефицит), процесс производства может задержаться или совсем остановиться. Однако, если запасы достаточно велики, то возрастает плата за них и за их хранение.

Таким образом, возникает задача управления запасами, т.е. необходимо выбрать некоторое компромиссное решение по созданию запасов или выработать стратегию управления запасами.

Основные типы принимаемых решений по управлению запасами следующие:

1. Определить какое, количество товара должно быть в запасе.

2. Определить, в какое время необходимо производить пополнение запасов.

В настоящее время существует множество подходов к решению подобного рода задач.

Рассмотрим три простейшие математические модели, включающие:

а) основную модель управления запасами - определение оптимального размера партии;

б) модель производственных поставок;

в) модель, учитывающую штрафы.

Итак, предмет изучения - количество D запаса на складе и время t, для которого рассматривается этот запас, т.е. исследуется функция D = f(t), соответствующая величине запаса в момент времени t. График такой функции называется графиком изменения запаса.

По поводу изменения функции запасов сделаем следующие предположения:

1 .При наличии заявки на товар, он отпускается и D уменьшается. Величина спроса непрерывна во времени.

2. Если D = 0, то имеет место дефицит товара.

3. При поступлении товаров на склад (запасы пополняются) и D увеличивается. Пусть сначала пополнение запасов будет мгновенным, затем допустим, что пополнение идет непрерывно, в течение некоторого интервала времени.

Издержки, связанные с запасами, можно представить следующим образом:

Организационные издержки - расходы, связанные с оформлением и доставкой товаров, необходимые для каждого цикла складирования. Это подготовительно-заключительные операции при поступлении товаров и подаче заявок.

Если запасы нужно пополнить, то на склад завозится очередная партия. Издержки на поставку - организационные издержки.

Количество товаров, поставляемое на склад, - размер партии товаров.

Издержки содержания запасов - затраты, связанные с хранением. Расходы этого рода возникают из-за ренты складирования и амортизации в процессе хранения (товары могут портиться, устаревать, их количество может уменьшаться и т.п.).

Издержки, связанные с дефицитом (штрафы). Если поставка со склада не может быть выполнена, то возникают дополнительные издержки, связанные с отказом. Это может быть реальный денежный штраф, уплачиваемый лицу, делающему заявку на товар, или ущерб, не осязаемый непосредственно (ухудшение бизнеса в будущем, потеря потребителей).

Математическая модель должна учитывать все эти издержки, и цель моделирования заключается в том, чтобы найти такую стратегию управления запасами, при которой суммарные издержки, связанные с запасами, сводились бы к минимальным.

Основная задача

Итак, имеем следующую таблицу параметров модели и предположения (допущения) по изменению их величин.

Название параметра Обозначение Единицы измерения Предположения
Интенсивность спроса d Ед-цы товара в год Спрос постоянен и непрерывен. Весь спрос удовлетворяется.
Организационные издержки s $ за одну партию Организационные издержки постоянны, не зависят от размера партии
Стоимость товара c $ за ед-цу товара Цена ед-цы товара постоянна, имеем только один вид товара
Издержки содержания запасов h $ за ед-цу товара в год Стоимость хранения ед-цы товара в течение года постоянна
Размер партии q Ед-ца товара в одной партии Постоянная величина, поступление мгновенное, как только уровень запаса становится равным 0.

Задача управления: определить значение q, при котором минимизируются годовые затраты.

Рассмотрим график изменения запасов. В соответствии с предположениями этот график имеет вид:

Чтобы полностью удовлетворить годовой спрос d в размере поставки, равном q, нужно за год сделать

поставок. Партия - это поставка.

Средний уровень запасов равен

.

Составляем уравнение издержек. Это будет:

.

Чтобы найти минимум С, считаем функцию f(q) дифференцируемой. Тогда значение q находится из уравнения:

или
,

откуда

,

где q* - оптимальный размер партии, называемый также оптимальным заказом.

Модель производственных поставок

Рассмотрим теперь модель производственных поставок, когда поступление товаров на склад производится непосредственно с производственной линии, т.е. уже не будет мгновенным (т.е. партия не поставляется в течение одного дня).

Считаем, что заказы поступают непрерывно.

Допущения в таблице остаются такими же за исключением тех, которые касаются поступления продукции. Эта величина теперь будет определяться скоростью производства, p - количество товаров, выпускаемых производственной линией за год.

За каждый цикл изменения запасов на склад поступает q единиц товара. Это количество идет с производственной линии, работающей со скоростью p. Спрос в течение года постоянен и его интенсивность d. Как только уровень запасов станет нулевым, с линии начнет поступать следующее количество товаров. Величина q - размер партии, т.е. количество товара в одной поставке. Описанная картина представлена на следующем графике:

Эффективная скорость пополнения запасов в течение времени поставки равна p - d.

Уравнение издержек:

С = С1 + С2 + С3.

Для С1 имеем следующее. Спрос равен d товаров в год. Следовательно, если одна поставка содержит q - товаров, то за год нужно сделать

поставок, а именно:

.

Для С2 имеем:

С2 = сd.

Для С3 (затраты на хранение запасов) имеем:

С3 = (средний уровень запасов) × h.

Средний уровень запасов находится следующим образом:

1. Максимальный уровень RT = (p - d)t, где t ‑ продолжительность поставки.

2. pt = q (количество товаров в одной поставке).

Отсюда:

(средний уровень запасов) =

(максимальный уровень запасов) =
.

Следовательно:

.

Оптимальный размер партии находится из уравнения:

.

Отсюда


.

Модель, учитывающая штрафы

Рассмотрим третью модель, которая включает штрафы.

Считаем, что существуют периоды дефицита товаров (нулевые запасы), который покрывается при последующих поставках, и штрафов за несвоевременную поставку.