Смекни!
smekni.com

Математические методы экономики (стр. 12 из 22)

Здесь

- производственные затраты,
- дополнительные затраты, соответствующие приращению производства на вектор
, а
- конечное потребление в год t. Поэтому условие (6.3.1) требует, чтобы весь годичный запас товаров покрывал все годичные затраты ежегодно. Неравенство (6.3.2) задает условие на необходимый объем трудовых ресурсов, неравенство (6.3.3) говорит о том, что запасы на данный год не могут превышать результатов производства предыдущего года, и, наконец, уравнение (6.3.4) описывает динамику роста валового выпуска из года в год.

Если сравнить систему (6.3.1)-(6.3.5) с моделью Леонтьева (6.2.1), то можно заметить, что последняя получается из (6.3.1) при отсутствии приращения производства, т.е. когда

. Дополнительные условия (6.3.2)-(6.3.4) вызваны необходимостью учета трудовых ресурсов и динамического характера развития производства. Как и модель Леонтьева, данная схема может быть обобщена и детализирована по ряду параметров. В приведенном здесь виде наиболее нереальным является условие (6.3.4), которое предполагает (при
) получение результатов от затрат, осуществляемых в начале периода
, уже к концу этого периода. Условие (6.3.4) можно переписать так:

В этом равенстве последнее слагаемое имеет смысл приращения производства за первые t лет по сравнению с начальным объемом выпуска. Доля такого приращения, приходящаяся на одну единицу начального валового выпуска, есть

Введем величину

. Тогда уравнение (6.3.4) можно написать в виде

Представление динамики производства в подобном виде будет использовано нами в следующем параграфе. Здесь заметим только, что более адекватным описанием динамики производства, чем (6.3.4), представляется равенство

где

- отнесенный к моменту t временной лаг,
(
).

Обозначим

и составим матрицы

с помощью которых систему (6.3.1)-(6.3.5) перепишем в виде

В математической экономике магистралью называется траектория экономического роста, на которой пропорции производственных показателей (такие как темп роста производства, темп снижения цен) неизменны, а сами показатели (такие как интенсивность производства, валовый выпуск) растут с постоянным максимально возможным темпом. Таким образом, магистраль - это траектория или луч максимального сбалансированного роста. Ее часто сравнивают со скоростной автострадой. Так, например, для того чтобы добраться из Кемерово в Киселевск как можно быстрее, наиболее целесообразно сначала проехать по автостраде Кемерово-Новокузнецк, а затем уже съехать на ответвляющуюся от нее дорогу в районе Киселевска. Так мы потеряем на дорогу меньше времени и доедем до конечного пункта с большим комфортом, чем если бы мы ехали по обычному шоссе через Ленинск-Кузнецкий и Белово.

Поскольку "оптимальное" или "эффективное" развитие экономики в любом смысле так или иначе связано и должно сопровождаться экономическим ростом, то для достижения любой конечной цели следует поступать аналогичным образом: сначала вывести производство на магистральный путь, т.е. на траекторию (или луч) Неймана, характеризующуюся максимальным темпом роста

и минимальной нормой процента
(см. (6.4.14)), а по истечении определенного срока времени вывести ее к задуманной цели. Такими целями могут быть максимизация прибыли, минимизация затрат, максимизация полезности от потребления товаров, достижение конкурентного равновесия при наиболее благоприятных условиях, т.е. на более высоком уровне благосостояния населения, и т.д.

Итак, с одной стороны мы имеем магистральные модели, а с другой - оптимизационные или еще шире - нормативные модели экономики. Изучение этих двух моделей во взаимосвязи, т.е. изучение связи между магистральными и оптимальными (в том или ином смысле) траекториями и является предметом магистральной теории. Можно говорить, что магистральная теория является одним из средств качественного анализа оптимальных траекторий. Основной целью этой теории является исследование условий так называемых "слабой" и "сильной" теорем о магистралях. Слабая теорема утверждает, что за исключением некоторого малого периода

(или некоторого числа дискретных моментов из
), не зависящего от продолжительности T планового периода, все оптимальные траектории сосредотачиваются в относительной близости к магистральной траектории. Сильная теорема говорит о том, что те небольшие промежутки времени
, на которых оптимальные траектории удалены от магистральной, если они существуют, то разве лишь в начале периода
, т.е.
, или в конце периода
, т.е.
; а в середине периода оптимальные траектории расположены в относительной близости к магистральной.

В общем случае в моделях экономической динамики даже при неизменности технологических возможностей утверждения теорем о магистрали не выполняются. Для их выполнения приходится вводить различные дополнительные предположения о свойствах исходной модели экономики. Другой путь состоит в изучении реальных отраслевых пропорций и сравнении их с магистральными. Благодаря техническому прогрессу и изменчивости во времени общественных предпочтений различных благ, реальное состояние экономики при детальном (дезагрегированном) ее описании всегда значительно отличается от магистрального. В то же время, как показывают полученные в этом направлении результаты исследований, при высоком уровне агрегирования экономические пропорции близки к магистральным.

Теоремы о магистралях доказываются для ряда оптимизационных моделей расширяющейся экономики. Наиболее общей из них является известная теорема Раднера для нелинейных моделей расширения (см. §7.2). Здесь мы приведем подобные теоремы для линейных моделей Леонтьева и Неймана. Единственная наша цель - дать читателю начальное представление о магистральной теории. Поэтому приводить сложные доказательства теорем и заниматься подробным и строгим анализом их условий не будем. Для более углубленного изучения магистральной теории можно рекомендовать книги [2, 16].

Три этапа построения производственной функции. Спецификация ПФ, идентификация параметров. Проверка на адекватность.

По существу, производственная функция f есть совокупность "правил", с помощью которых для каждого набора затрат определяется соответствующий выпуск. Поэтому построение производственной функции означает нахождение математической формулы, отражающей эти правила или, иначе говоря, закономерности превращения набора ресурсов в конечный продукт. Этот процесс условно можно представить схемой:

В блоке f (см. рис. 4.2 ), образно говоря, происходит "смешивание" ресурсов

в определенных "пропорциях" таким образом, чтобы получился требуемый продукт. Эти "пропорции" определяются спецификой производства и математически выражаются с помощью различных коэффициентов и показателей степени для величин
. "Смешивание" их математически выражается с помощью разных формальных операций между ними (суммирования, произведения, логарифмирования и т.д.), вид и сочетание которых также определяется спецификой моделируемого производства. Так что вопрос построения производственной функции в каждом конкретном случае сводится к нахождению этих "пропорций" и к определению характера их "смешивания".

Из сказанного выше следует, что для построения производственных функций нужно знать технологию производства, ее структуру и организацию, а также принципы работы сложных машин и оборудования, т.е. надо быть одновременно и технологом, и инженером, и математиком. Оказывается, что знание всего этого сложного производственного механизма не требуется, если владеть подходящими математическими приемами. Речь идет об использовании методов регрессионного анализа на основе статистических (опытных, экспертных) данных о затратах и выпуске. Не умаляя достоинства других математических и иных методов построения производственных функций, можно сказать, что именно методы регрессионного анализа наилучшим образом оправдали себя на практике и потому являются наиболее популярными. Вопросы построения производственных функций на основе экспериментальных данных являются предметом изучения специального раздела – эконометрики. . Здесь же мы коснемся лишь содержательной стороны построения конкретных видов производственных функций.