Смекни!
smekni.com

Математическая статистика (стр. 1 из 3)

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Математическая статистика»


Задания к контрольной работе

1. Генеральная совокупность. Выборка. Объем выборки. Среднее значение. Дисперсия. Среднеквадратическое отклонение.

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический вывод. Модель :

; X = 4;

3. Для представленных данных выполнить следующее задание:

3.1 Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

3.2 Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

3.3 Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.

Производительность труда, фондоотдача и уровень рентабельности по хлебозаводам области за год характеризуются следующими данными:

№ завода Фактор Уровень рентабельности, %
Фондоотдача, грн Производительность труда, грн
1 38,9 3742 10,7
2 33,3 2983 11,3
3 37,7 3000 12,2
4 31,1 2537 12,4
5 29,4 2421 10,9
6 37,2 3047 11,3
7 35,6 3002 11,1
8 34,1 2887 14,0
9 16,1 2177 6,8
10 22,8 2141 7,1
11 21,7 2005 8,9
12 26,8 1843 4,2
13 23,3 2031 7,4
14 24,5 2340 11,4
15 19,9 1933 4,8

Нелинейную зависимость принять


1. Генеральная совокупность. Выборка. Объем выборки. Среднее значение. Дисперсия. Среднеквадратическое отклонение

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Выборочная совокупность (выборка)- часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение о всей генеральной совокупности.

Для того, чтобы заключение, полученное путем изучения выборки , можно было распространить на всю генеральную совокупность выборка должна обладать свойством репрезентативности.

Объем выборки - общее число единиц наблюдения в выборочной совокупности. Определение объема выборки представляет собой один из основных этапов ее формирования. Объем выборки для генеральной совокупности обозначается– N, для выборки – n.

Среднее значение выборки можно вычислить по формуле:

Дисперсия (от лат. dispersio - рассеяние), в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. Дисперсия вычисляется по формуле:

- простая дисперсия,

- взвешенная дисперсия.

Дисперсия есть средняя величина квадратов отклонений. Для этого достаточно извлечь из дисперсии корень второй степени, получится среднее квадратическое отклонение (

).

или

.

Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности.

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ

Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %. Формула расчета коэффициента эластичности:

Э = f′(x)X/Y,

где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.

,

.

Следовательно получим следующее математическое выражение

.

При заданном значении X=4 получим, что коэффициент эластичности равен Э=0,25.

Допустим, что заданная функция

определяет зависимость спроса от цены. В этом случае с ростом цены на 4% спрос повысится в среднем на 0,25 %.

3. Производительность труда, фондоотдача и уровень рентабельности по хлебозаводам области за год характеризуются следующими данными:

№ завода Фактор Уровень рентабельности, %
Фондоотдача, грн Производительность труда, грн
1 38,9 3742 10,7
2 33,3 2983 11,3
3 37,7 3000 12,2
4 31,1 2537 12,4
5 29,4 2421 10,9
6 37,2 3047 11,3
7 35,6 3002 11,1
8 34,1 2887 14,0
9 16,1 2177 6,8
10 22,8 2141 7,1
11 21,7 2005 8,9
12 26,8 1843 4,2
13 23,3 2031 7,4
14 24,5 2340 11,4
15 19,9 1933 4,8

Нелинейную зависимость принять

Последовательность выполнения задания 3

1. Вводим данные .Определяем основные числовые характеристики.

2. Строим диаграмму рассеивания (корреляционное поле).

3. Определяем тесноту линейной связи по коэффициенту корреляции.

4. Строим линейную модель вида у = bо + b1*х.

5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера

6. Проверяем статистическую значимость коэффициентов модели.

7. По полученной модели рассчитываем значение показателя Y для всех точек выборки и в точке прогноза (точку прогноза выбираем произвольно из области прогноза).

8. Рассчитаем полуширину доверительного интервала d. =

9. Рассчитаем доверительный интервал для всех точек выборки и в точке прогноза: (Y-d, Y +d).

10. Рассчитываем коэффициент эластичности:

Для линейной модели yх = b1. Получим

, где у(х) - рассчитанное по модели значение показателя.

11. Строим, используя «Мастер диаграмм», корреляционное поле, график эластичности и доверительную область.

12. Делаем лист с формулами.

Решение 1:

1. Вводим данные. Определяем основные статистики. Строим корреляционное поле. По виду корреляционного поля выдвигаем гипотезу о нелинейной зависимости между X и Y.

2. С помощью формул перехода линеаризуем нелинейную модель:

, V=у. Получаем линейную модель относительно новых переменных

V = b0 + b1u

3. Рассчитываем основные числовые характеристики X, Y, V, U с помощью «Мастера функций» и функции «Описательная статистика».

4. Продолжим регрессионный анализ с помощью вкладки «Анализ данных» и функции «Регрессия».

5. Вычислим значения V(U),V min, V max.

6. Рассчитаем полуширину доверительного интервала d .

7. По формулам обратного перехода пересчитываем значения Y, Ymin (левая граница доверительного интервала»,Ymaх(правая граница доверительного интервала).

8. Рассчитываем коэффициент эластичности

,

9. Строим доверительные области V(U) и Y(х) и график эластичности.

10. Делаем лист с формулами.

Решение 2:

1. Вводим данные.

2. Определяем основные статистики.

3. По корреляционной таблице проверяем факторы на коллинеарность.

4. Строим линейную модель вида y = b0+b1х+b2х.

5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера.

6. Проверяем статистическую значимость коэффициентов модели.

7. По полученной модели рассчитываем значения показателя Y для всех точек выборки и в точке прогноза(точку прогноза выбрали произвольно из области прогноза).