СОДЕРЖАНИЕ
1. Анализ объекта управления
1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией
1.2 Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией
1.2.1 Матрица Фробениуса
1.2.2 Метод параллельной декомпозиции
2. Решение задачи быстродействия симплекс-методом
3. Оптимальная l – проблема моментов
3.1 Оптимальная l – проблема моментов в пространстве «вход-выход»
3.2 Оптимальная l – проблема моментов в пространстве состояний
4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)
5. Аналитическое конструирование оптимальных регуляторов (акор)
5.1 Стабилизации объекта управления на полубесконечном интервале времени
5.1.1 Решение алгебраического уравнения Риккати методом диагонализации
5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния
5.2 Стабилизации объекта управления на конечном интервале времени
5.3 Задача акор – стабилизации для компенсации известного возмущающего воздействия.
5.4 Задача акор для отслеживания известного задающего воздействия. i подход
5.5 Задача акор для отслеживания известного задающего воздействия. ii подход (линейный сервомеханизм)
5.6 Задача акор – слежения со скользящими интервалами.
6. Синтез наблюдателя полного порядка
Литература
Приложение
PlotTimeFrHaract.m
ProstranstvoSostoyanii.m
SimplexMetod2.m
Optimal_L_problem_moments.m
Gramian_Uprav.m
AKOR_stabilizaciya_na_polybeskon_interval.m
AKOR_stabilizaciya_na_konech_interval.m
Sravnenie_stabilizacii.m
AKOR_stabilizaciya_pri_vozmusheniyah.m
AKOR_slegenie_na_konech_interval_I_podxod.m
AKOR_slegenie_na_konech_interval_II_podxod.m
AKOR_slegenie_so_skolz_intervalami_Modern.m
Sintez_nablyud_polnogo_poryadka.m
Solve_Riccati_Method_Diag.m
Solve_Riccati_Method_Revers_Integr.m
Vozmyshyayushee_Vozdeistvie_Discrete_Revers.m
Zadayushee_Vozdeistvie_Discrete_Revers_Modern.m
Передаточная функция данного объекта имеет вид:
,где:
, ; , , , , , .или
.Нули передаточной функции:
Полюса передаточной функции (полученные стандартными функциями среды Matlab 7.4):
Рис.1. График расположения нулей и полюсов передаточной функции объекта на комплексной плоскости.
Найдем временные характеристики объекта управления.
К временным характеристикам относятся
и . – переходная характеристика; – импульсная переходная функция;Для нахождения
и воспользуемся пакетом Matlab 7.4. ,Аналитическое выражение для
:В этом случае
имеет вид
Рис.2. График переходной характеристики
.Рис.3. График переходной характеристики
на интервале (увеличенное). ,Аналитическое выражение для
:В этом случае
имеет вид
Рис.4. График импульсной переходной характеристики
.
Рис.5. График импульсной переходной характеристики
на интервале (увеличенное).Найдем частотные характеристики объекта управления.
К частотным характеристикам относятся:
амплитудно – частотная характеристика (АЧХ),
фазо – частотная характеристика (ФЧХ),
амплитудно – фазовая частотная характеристика (АФЧХ),
Аналитическое выражение для АЧХ:
.В этом случае АЧХ имеет вид
Рис.6. График АЧХ
Рис.7. График АЧХ на интервале
(увеличенное). Аналитическое выражение для ФЧХ:В этом случае ФЧХ имеет вид
Рис.8. График ФЧХ .
Рис.9. График ФЧХ на интервале
(увеличенное).
Рис.10. График АФЧХ.
Рис.11. График АФЧХ (увеличенное).
Аналитическое выражение для ЛАЧХ:
.
В этом случае ЛАЧХ имеет вид
Рис.12. График ЛАЧХ.
Аналитическое выражение для ЛФЧХ:
В этом случае ЛФЧХ имеет вид
Рис.13. График ЛФЧХ.
Передаточная функция данного объекта имеет вид:
,где:
, ; , , , , , .или
Описание системы в пространстве состояний имеет следующий вид:
Переходя в область изображений описание системы в пространстве состояний будет иметь следующий вид:
Получим выражения, которые определяют вектор состояний и выход заданного объекта в общем виде: