Рис.28. Графики фазовых координат.
Рис.29. График управления.
Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:
Рис.30. Графики фазовых координат.
Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.
Рассмотрим систему вида
где
Матрицы
Весовые матрицы
Начальные условия для заданной системы
Время стабилизации
Задаем возмущающее воздействие только на первую координату, так как только она имеет значение
Решение задачи стабилизации сводится к решению уравнения Риккати
с начальными условиями:
Введём вспомогательную вектор-функцию
с начальными условиями:
Управление определяется по формуле:
Используя скрипт AKOR_stabilizaciya_pri_vozmusheniyah.m, получили следующие результаты:
Рис.31. Графики решения уравнения Риккати.
Рис.32. Графики коэффициентов регулятора обратной и прямой связи.
Рис.33. График возмущающего воздействия.
Рис.34. График вспомогательной вектор – функции.
Рис.35. Графики фазовых координат.
Рис.36. График управления.
Рис.37. График возмущающего воздействия.
Рис.38. График вспомогательной вектор – функции.
Рис.39. Графики фазовых координат.
Рис.40. График управления.
Выводы: По графикам фазовых координат при различных воздействиях видно, что влияние возмущающего воздействия не существенно и фазовые координаты устанавливаются в ноль. При этом видно, что графики первой фазовой координаты при различных воздействиях мало отличаются друг от друга, т.е. система отрабатывает любое возмущение.
Система задана в виде:
Матрицы
Весовые матрицы
Начальные условия для заданной системы
Время слежения
Задающее воздействие в виде системы ДУ
Начальные условия для воздействия:
Введем расширенный вектор состояния и расширенные матрицы
Тогда новое описание системы имеет вид:
с начальными условиями:
Решением уравнения Риккати будет матрица:
с н.у.
Тогда оптимальное управление, находится по формуле:
Используя скрипт AKOR_slegenie_na_konech_interval_I_podxod, получили следующие результаты:
Рис.41. Графики решения уравнения Риккати.
Рис.42. Графики коэффициентов регулятора обратной и прямой связи.
Рис.43. Графики фазовых координат.
Рис.44. График управления.
Выводы: На данном этапе была решена задача АКОР-слежения. В качестве отслеживаемого воздействия была взята исходная система, но с другими начальными условиями, поэтому графики фазовых координат отличаются от заданных, но только на начальном участке движения.
Система задана в виде:
Матрицы
Весовые матрицы