матрица
Матричное дифференциальное уравнение Риккати имеет вид:
Если линейная стационарная система является полностью управляемой и наблюдаемой, то решение уравнения Риккати при
В рассматриваемом случае весовые матрицы
Оптимальное значение функционала равно
и является квадратичной функцией от начальных значений отклонения вектора состояния.
Таким образом, получаем, что при
где
5.1.1. Решение алгебраического уравнения Риккати методом диагонализации
Для решения данной задачи найдем весовые матрицы
Выберем произвольно
Взяв значения
Матрицы системы имеют вид:
Введем расширенный вектор состояния
Тогда матрица Z будет иметь следующий вид:
или в численном виде
Собственные значения матрицы
Зная собственные значения и собственные вектора матрицы Z, построим матрицу
По определению все решения должны быть устойчивы при любых начальных условиях
Тогда матрица
Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:
Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид:
Весовые матрицы
Матрицы
Запишем уравнение Риккати
Зная, что
Solve_Riccati_Method_Revers_Integr.m.:
Рис.22. Графики решения уравнения Риккати.
Найдем разницу между решениями уравнения Риккати в пунктах 5.1.1 и 5.1.2:
Выводы: сравнивая решения полученные в пунктах 5.1.1 и 5.1.2 можно сказать, что решения уравнения Риккати первым и вторым методами совпадают с заданной точностью. Погрешность расхождения решений невелика.
Используя скрипт AKOR_stabilizaciya_na_polybeskon_interval.m получим коэффициенты регулятора, фазовые координаты системы и управление.
Рис.23. Графики коэффициентов регулятора обратной связи.
Рис.24. Графики фазовых координат.
Рис.25. График управления.
Выводы: т.к. решения уравнения Риккати методом диагонализации и интегрирования в обратном времени дают практически одинаковый результат, то можно считать, что задача АКОР – стабилизации на полубесконечном интервале решена с заданной точностью.
Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме
Начальные условия для заданной системы
Время стабилизации
Необходимо получить закон управления
минимизирующий функционал вида
Закон оптимального управления в данной задаче имеет вид
Матричное дифференциальное уравнение Риккати будет иметь следующий вид:
Если обозначить
Уравнение замкнутой скорректированной системы примет вид
Матрицы
Весовые матрицы
Используя скрипт AKOR_stabilizaciya_na_konech_interval.m получили следующие результаты:
Рис.26. Графики решения уравнения Риккати.
Рис.27. Графики коэффициентов регулятора обратной связи.