Задача 3.
Задание 1. Записать исходные данные задачи в виде транспортной таблицы, определить, открытой или закрытой является транспортная задача.
Задание 2. Сформулировать экономико-математическую модель исходной транспортной задачи.
Задание 3. Найти оптимальный план перевозок, отметив при этом единственность или неединственность оптимального плана.
Вариант 3.
На складах A, B, C, Д находится соответственно 50 т, 40 т, 40 т и 70 т муки, которую нужно доставить четырем хлебозаводам. Первому хлебозаводу требуется 50 т муки, второму – 40 т, третьему – 50 т и четвертому – 60 т муки. Стоимость доставки одной тонны муки со склада А каждому хлебозаводу соответственно равны 8, 3, 5 и 2 ден. единиц, со склада В – 7, 4, 9 и 8 ден. единиц, со склада С – 6, 3, 3 и 1 ден. единиц, со склада Д – 2, 4, 1 и 5 ден. единиц. Составить план перевозки муки, обеспечивающий минимальные транспортные расходы.
Решение.
Задание 1.
Мощности поставщиков | Мощности потребителей | |||
50 | 40 | 50 | 60 | |
50 | 8 | 3 | 5 | 2 |
40 | 7 | 4 | 9 | 8 |
40 | 6 | 3 | 3 | 1 |
70 | 2 | 4 | 1 | 5 |
Сумма мощностей поставщиков (запасы муки на всех складах) 50+40+40+70 = 200, сумма мощностей потребителей (потребности всех хлебозаводов) 50+40+50+60 = 200. Суммы равны, данная задача является транспортной задачей закрытого типа.
Задание 2.
Обозначим xij объем поставок муки от i – го поставщика (склада) j – му потребителю (хлебозаводу), i = 1, 2, 3, 4; j = 1, 2, 3, 4. Очевидно, xij ³ 0. В закрытой транспортной задаче все ограничения являются равенствами.
Так как потребности должны быть удовлетворены, то выполняются условия:
х11 + х21 + х31 + х41 = 50
х12 + х22 + х32 + х42 = 40 (1)
х13 + х23 + х33 + х43 = 50
х14 + х24 + х34 + х44 = 60
Так как поставки от поставщика всем потребителям не могут быть больше его возможностей, то выполняются условия:
х11 + х12 + х13 + х14 = 50
х21 + х22 + х23 + х24 = 40 (2)
х31 + х32 + х33 + х34 = 40
х41 + х42 + х43 + х44 = 70
Затраты на транспортировку составят
F(X) = 8х11 + 3х12 + 5х13 + 2х14+
+ 7х21 + 4х22 + 9x23 + 8х24+
+ 6х31 + 3х32 + 3х33 + 1х34+
+ 2х41 + 4х42 + 1х43 + 5х44+.
Требуется найти неотрицательное решение системы уравнений (1) – (2), на котором целевая функция затрат F(X) принимает минимальное значение.
Задание 3.
Начальный план перевозок находим методом минимальной стоимости:
Заполняем клетку (3; 4) х34 = min {60, 40} = 40, от поставщика 3 вывезено все, в строке 3 больше поставок нет. Заполняем клетку (4; 3) х43 = min {50, 70} = 50, потребителю 3 все завезено, в столбец 3 больше поставок нет. Клетка (1; 4) х14 = min {60 - 40, 50} = 20, потребителю 4 все завезено, в столбец 4 больше поставок нет. Клетка (4; 1) х41 = min {50, 70 - 50} = 20, от поставщика 4 вывезено все, в строке 4 больше поставок нет. Клетка (1; 2) х12 = min {40, 50 - 20} = 30, от поставщика 1 вывезено все, в строке 1 больше поставок нет. Клетка (2; 2) х22 = min {40 - 30, 40} = 10, потребителю 2 все завезено, в столбец 2 больше поставок нет. Клетка (2; 1) х21 = 30. Все клетки, в которые даны поставки, считаем занятыми, остальные – свободными. Первоначальный план перевозок задается таблицей 1.
Таблица 1.
Мощности поставщиков | Мощности потребителей | ui | |||
50 | 40 | 50 | 60 | ||
50 | 8 | 3 30 | 5 | 2 20 | 0 |
40 | 7 30 | 4 10 | 9 | 8 | -1 |
40 | 6 | 3 | 3 | 1 40 | 1 |
70 | 2 20 | 4 | 1 50 | 5 | 4 |
vj | 6 | 3 | 5 | 2 |
Исследуем этот план перевозок на оптимальность методом потенциалов. Потенциалы для занятых клеток удовлетворяют уравнениям: vj = cij + ui.
Пусть u1 = 0; по клетке (1; 2) находим v2 = 3; по клетке (1; 4) находим v4 = 2; по клетке (2; 2) находим u2 = -1; по клетке (2; 1) находим v1 = 6; по клетке (3; 4) находим u3 = 1; по клетке (4; 1) находим u4 = 4; по клетке (4; 3) находим v3 = 5.
Для всех клеток матрицы перевозок найдем оценки клеток dij = (ui + cij) - vj :
Среди оценок есть отрицательная, следовательно план перевозок Х0 (таблица 1) не оптимальный. Наименьшая оценка в клетке (3; 3).
Составим цикл пересчета и пометим клетки поочередно знаками «+» и «-»:
+ - + - + - + -
(3; 3), (3; 4), (1; 4), (1; 2), (2; 2), (2; 1), (4; 1), (4; 3).
В клетки с «+» переместим из клеток с «-» величину min{40; 30; 30; 50} = 30. В этом случае план перевозок станет таким ( таблица 2).
Таблица 2.
Мощности поставщиков | Мощности потребителей | ui | |||
50 | 40 | 50 | 60 | ||
50 | 8 | 3 0 | 5 | 2 50 | 0 |
40 | 7 | 4 40 | 9 | 8 | -1 |
40 | 6 | 3 | 3 30 | 1 10 | 1 |
70 | 2 50 | 4 | 1 20 | 5 | 3 |
vj | 5 | 3 | 4 | 2 |
Освободилось две клетки (1; 2) и (2; 1). Клетку (1; 2) считаем занятой с нулевой поставкой.
Среди оценок нет отрицательных, следовательно план перевозок Х0 (таблица 1) оптимальный.
Исследуем этот план перевозок на оптимальность методом потенциалов. Потенциалы для занятых клеток удовлетворяют уравнениям: vj = cij + ui.
Пусть u1 = 0; по клетке (1; 2) находим v2 = 3; по клетке (1; 4) находим v4 = 2; по клетке (2; 2) находим u2 = -1; по клетке (3; 4) находим u3 = 1; по клетке (3; 3) находим v3 = 4; по клетке (4; 3) находим u4 = 3; по клетке (4; 1) находим v1 = 5.
Для всех клеток матрицы перевозок найдем оценки клеток dij = (ui + cij) - vj :
Так как среди оценок свободных клеток нет нулевых, то оптимальный план перевозок единственный.
Общие затраты на перевозки
F(X1) = 2*50 + 4*40 + 3*30 + 1*10 + 2*50 + 1*20 = 480 ден. единиц
будут минимальными при:
x14 = 50, x22 = 40, x33 = 30, х34 = 10, x41 = 50, x43 = 20, остальные xij = 0.
По оптимальному плану перевозок следует перевезти муки:
со склада А на четвертый хлебозавод - 50 т;
со склада В на второй хлебозавод - 40 т;
со склада С на третий хлебозавод - 30 т;
на четвертый хлебозавод - 10 т;
со склада Д на первый хлебозавод - 50 т;
на третий хлебозавод - 20 т.
Задача 4
В таблице приведены годовые данные о трудоемкости производства I т цемента (нормо-смен) (N —последняя цифра зачетной книжки студента):
Текущий номер года (t) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Трудоемкость 1 т цемента (yi) | 7,9+0,N | 8,3+0,N | 7,5+0,N | 6,9+0,N | 7,2+0,N | 6,5+0,N | 5,8+0,N | 4,9+0,N | 5,1+0,N | 4,4+0,N |
Задание 1. Сгладить временной ряд методом простой скользящей средней, выбрав длину интервала сглаживания m = 3; результаты отразить на графике.
Задание 2. Определить наличие тренда во временном ряду методом Фостера - Стьюарта. Табличные значения статистики Стьюдента ta принять равными при уровне значимости a = 0.05 ta = 2,23 , а при a = 0,30 - ta = 1,09; другие необходимые табличные данные приведены в таблице 4.5 учебника на с.153 (описание метода Фостера - Стьюарта см. учебник с. 151- 153).
Задание 3. Для исходного временного ряда построить линейную трендовую модель
, определив ее параметры на основе метода наименьших квадратов (соответствующую систему нормальных уравнений см. в учебнике на с. 196 формула (5.5)).Задание 4. Оценить адекватность построенной модели на основе исследования
а) близости математического ожидания остаточной компоненты (ряда остатков) нулю; критические значения r-критерия принять равным тому числу, как указанно в задании 2;
б) случайности отклонений остаточной компоненты по критерию пиков (поворотных точек); Расчеты выполнить на основе соотношения 5.9. учебника на с. 200;
в) независимости уровней ряда остатков (отсутствие автокорреляции) на основе критерия Дарбина — Уотсона (см. учебник с. 203— 204), используя в качестве критических значений dl = 1.08 и d2 = 1,36; если критерий Дарбина — Уотсона ответа не дает, исследование независимости провести по первому коэффициенту автокорреляции:
,где ei -- уровни остаточной компоненты;
Модуль первого коэффициента автокорреляции сравнить с критическим уровнем этого коэффициента, значение которого принять равным 0,36;
г) нормальности закона распределения уровней остаточной компоненты на основе RS-критерия;
В качестве критических значений принять интервал от 2,7 до 3,7 (см. учебник, стр. 201—-202).
Задание 5. Оценить точность построенной трендовой линейной модели, используя показатели среднего квадратического отклонения от линии тренда (формула (5,17) учебника на с. 210, k = 1) и средней относительной ошибки аппроксимации (формула (5.14) учебника на с. 204).
Задание 6. Построить точечный и интервальный прогноз трудоемкости производства 1 т цемента на два шага вперед (формула (5.18) учебника на с. 210). Результаты моделирования и прогнозирования отразить на графике.