В силу линейности оператора сдвига можно конечно-разностный оператор выразить, как
, и определить повторные конечные разности через многочлены от операторов сдвига так .Последнее позволяет формульно выражать n-ную повторную разность через (n+1) ординату табличной функции, начиная с i-той строки:
Если в выражении для g (i+n) положить i=0 и вместо
подставить их факториальные представления, то после несложных преобразований получится разложение функции целочисленного аргумента по многочленам , которые в литературе называют факториальными: .Можно поставить задачу разложения и функции действительной переменной f(x) по многочленам
относительно начала координат (аналогично ряду Маклорена), т.е. . Если последовательно находить конечные разности от левой и правой частей, то, зная, что и , после подстановки x=0 будем получать выражения для коэффициентов разложения . У многочленов k-той степени, , поэтому .Такое разложение табличной функции f(x) в литературе называют интерполяционным многочленом Ньютона для равных интервалов.
2.3 Взаимосвязь операторов разности и дифференцирования
Значение функции на удалении h от некоторой точки
можно выразить через значения производных в этой точке, разложив ее в ряд Тейлора:где
– оператор дифференцирования, – оператор сдвига, выраженный через оператор p.h – шаг по оси действительной переменной
Из равенства операторов сдвига, выраженных через p и
, можно получить взаимосвязь этих линейных операторов: ,Оператор дифференцирования порядка n, перенесенный в точку, удаленную от текущей, например, на 2 шага вперед представляется так:
.Выполнив алгебраическое перемножение многочленов с конечно-разностными операторами и ограничившись операторами со степенью не выше n, получим одну из возможных аппроксимаций оператора дифференцирования. Действуя таким сложным конечно-разностным оператором на ординату f(x), получаем формулу для вычисления n-й производной в точке
по значениям ее конечных разностей. Например, для n=2, отбрасывая все повторные разности выше третьего порядка, получим: .Если f(x) является многочленом степени n, то повторные разности (n+1) – го порядка тождественно равны нулю. Приравнивая нулю повторные разности порядков выше n мы фактически аппроксимируем f(x) многочленом степени n.
В предыдущем выражении, выразив повторные разности через ординаты табличной функции, получим еще один вид формулы для вычисления значения производной:
.Для целочисленного аргумента табличной функции запись выражения можно упростить, если положить h=1 и
2.4 Исчисление конечных разностей
Разложение функций в ряд по факториальным многочленам (интерполяционным многочленам Ньютона в частности) дает возможность получать формулы суммирования функциональных рядов в виде аналитических выражений, зависящих от пределов. Эта возможность открывается в связи с тем, что суммировать конечные разности не представляет большой сложности, а выразить конечную разность от факториального многочлена через факториальный же многочлен можно, воспользовавшись соотношением:
Факториальные многочлены по отношению к исчислению разностей ведут себя так же, как степенные функции в исчислении производных: дифференцирование тоже понижает степень многочлена на единицу. Это свойство позволяет в факториальном разложении заменить факториальные многочлены своими конечными разностями следующего вида:
Замена хороша тем, что суммирование конечных разностей в заданных пределах мнемонически весьма напоминает вычисление определенного интеграла от функции по ее первообразной:
Если
, то .Процедуру суммирования функционального ряда продемонстрируем на примере получения суммы квадратов натурального ряда чисел в пределах от a=1 до b=5 (Для проверки:
):Вторая сумма по переменной n представляет разложение
по факториальным многочленам, в которое входят значения конечных разностей 0, 1 и 2-го порядков, вычисленные в начале координат целочисленной переменной, т.е. при x=0. Они соответственно равны: , , .После подстановки значений разностей во второй сумме останутся два факториальных полинома: первой и второй степеней:
Если распределить вычисление сумм по слагаемым, то мы перейдем к суммированию конечных разностей от факториальных многочленов:
Литература
1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. – М.: Наука, 1987. – 600 с.
2. Воеводин В.В. Численные методы алгебры. Теория и алгорифмы. – М.: Наука, 1966. – 248 с.
3. Воеводин В.В. Вычислительные основы линейной алгебры. – М.: Наука, 1977. – 304 с.
4. Волков Е.А. Численные методы. – М.: Наука, 1987. – 248 с.
5. Калашников В.И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. – Харьков: НТУ «ХПИ», 2002. – 196 с.
6. Вержбицкий, В.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш.шк., 2001. 383 с.
7. Волков, Е.А. Численные методы. СПб.: Лань, 2004. 248 с.
8. Мудров, А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 с.
9. Шуп, Т.Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с.
10. Бахвалов, Н.С. Численные методы в задачах и упражнениях / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. М.: Высш. шк., 2000. 192 с.