Оцінка ефективності навчання нейромережі залежить від декількох керованих факторів. Теорія навчання розглядає три фундаментальні властивості, пов'язані з навчанням: ємність, складність зразків і обчислювальна складність. Під ємністю розуміють, скільки зразків може запам'ятати мережа, і які межі прийняття рішень можуть бути на ній сформовані. Складність зразків визначає число навчальних прикладів, необхідних для досягнення здатності мережі до узагальнення. Обчислювальна складність напряму пов'язана з потужністю процесора ЕОМ.
У загальному використанні є багато правил навчання, але більшість з цих правил є деякою зміною відомого та найстаршого правила навчання, правила Хеба. Дослідження різних правил навчання триває, і нові ідеї регулярно публікуються в наукових та комерційних виданнях. Представимо декілька основних правил навчання.
Правило Хеба з'явилося у його книзі "Організація поведінки" у 1949 р. "Якщо нейрон отримує вхідний сигнал від іншого нейрону і обидва є високо активними (математично мають такий самий знак), вага між нейронами повинна бути підсилена". При збудженні одночасно двох нейронів з виходами (хj, уі) на k-тому кроці навчання вага синаптичного з'єднання між ними зростає, в інакшому випадку - зменшується, тобто
D Wij(k)=r xj (k) yi (k),
де r - коефіцієнт швидкості навчання.
Правило Хопфілда є подібним до правила Хеба за винятком того, що воно визначає величину підсилення або послаблення. "Якщо одночасно вихідний та вхідний сигнал нейрона є активними або неактивними, збільшуємо вагу з'єднання оцінкою навчання, інакше зменшуємо вагу оцінкою навчання".
Правило "дельта". Це правило є подальшою зміною правила Хеба і є одним із найбільш загально використовуваних. Це правило базується на простій ідеї неперервної зміни синаптичних ваг для зменшення різниці ("дельта") між значенням бажаного та біжучого вихідного сигналу нейрона.
DWij= xj (di - yi).
За цим правилом мінімізується середньоквадратична похибка мережі. Це правило також згадується як правило навчання Відрова-Хофа та правило навчання найменших середніх квадратів.
У правилі "дельта" похибка отримана у вихідному прошарку перетворюється похідною передатної функції і послідовно пошарово поширюється назад на попередні прошарки для корекції синаптичних ваг. Процес зворотного поширення похибок мережі триває до досягнення першого прошарку. Від цього методу обчислення похибки успадкувала своє ім'я відома парадигма FeedForward BackPropagation.
При використанні правила "дельта" важливим є невпорядкованість множини вхідних даних. При добре впорядкованому або структурованому представленні навчальної множини результат мережі може не збігтися до бажаної точності і мережа буде вважатись нездатною до навчання.
Правило градієнтного спуску. Це правило подібне до правила "дельта" використанням похідної від передатної функції для змінювання похибки "дельта" перед тим, як застосувати її до ваг з'єднань. До кінцевого коефіцієнта зміни, що діє на вагу, додається пропорційна константа, яка пов'язана з оцінкою навчання. І хоча процес навчання збігається до точки стабільності дуже повільно, це правило поширене і є загально використовуване.
Доведено, що різні оцінки навчання для різних прошарків мережі допомагає процесу навчання збігатись швидше. Оцінки навчання для прошарків, близьких до виходу встановлюються меншими, ніж для рівнів, ближчих до входу.
На відміну від навчання Хеба, у якому множина вихідних нейронів може збуджуватись одночасно, при навчанні методом змагання вихідні нейрони змагаються між собою за активізацію. Це явище відоме як правило "переможець отримує все". Подібне навчання має місце в біологічних нейронних мережах. Навчання за допомогою змагання дозволяє кластеризувати вхідні дані: подібні приклади групуються мережею відповідно до кореляцій і представляються одним елементом.
При навчанні модифікуються синаптичні ваги нейрона-переможця. Ефект цього правила досягається за рахунок такої зміни збереженого в мережі зразка (вектора синаптичних ваг нейрона-переможця), при якому він стає подібним до вхідного приклада. Нейрон з найбільшим вихідним сигналом оголошується переможцем і має можливість гальмувати своїх конкурентів і збуджувати сусідів. Використовується вихідний сигнал нейрона-переможця і тільки йому та його сусідам дозволяється коректувати свої ваги з'єднань.
DWij (k+1)= Wij(k)+r [xj - Wij(k)].
Розмір області сусідства може змінюватись під час періоду навчання. Звичайна парадигма повинна починатись з великої області визначення сусідства і зменшуватись під час процесу навчання. Оскільки елемент-переможець визначається по найвищій відповідності до вхідного зразку, мережі Коxонена моделюють розподіл входів. Це правило використовується в самоорганізованих картах.
Розглядаючи карти Кохонена забражені на рис. 2.4., перш за все необхідно пригадати, що будь-яка нейронна мережа, перш за все, має бути виучена. Процес навчення полягає в підстроюванні внутрішніх параметрів нейромережі під конкретне завдання.
Рис. 2.4. Мережа Кохонена
При вченні «класичної» багатошарової нейромережі на вхід подаються дані або індикатори, а вихід нейромережі порівнюється з еталонним значенням (з так званим «вчителем»). Різниця цих значень називається помилкою нейронної мережі, яка і мінімізується в процесі вчення.
Таким чином, звичайні нейронні мережі виявляють закономірності між вхідними даними і прогнозованою величиною. Якщо такі закономірності є, то нейромережа їх виділить, і прогноз буде успішним [26].
В процесі навчання карт Кохонена на входи також подаються дані і індикатори, але при цьому мережа підстроюється під закономірності у вхідних даних, а не під еталонне значення виходу. Таке вчення називається вченням «без вчителя». Вчення при цьому полягає не в мінімізації помилки, а в підстроюванні внутрішніх параметрів нейромережі (вагів) для великого сов падіння з вхідними даними. Після вчення така нейромережа візуально відображує багатовимірні вхідні дані на плоскості нейронів.
Маючи таке представлення даних, можна дуже наочно побачити наявність або відсутність взаємозв'язку у вхідних даних. Для великої зручності візуальної вистави нейрони карти Кохонена розташовують у вигляді двомірної матриці і розфарбовують цю матрицю залежно від аналізованих параметрів нейронів
При роботі із звичайними нейромережами, операція картами Кохонена складається з декількох послідовних етапів.
Першим з них є етап визначення складу входів.Для хорошого вчення звичайної нейромережі потрібно вибрати таку безліч входів, яка найсильніше впливає на вихідні (прогнозовані) значення. Якщо ми вгадали, і входи дійсно впливають на виходи, то нейромережа працюватиме і даватиме відмінні прогнози. Проте підібрати правильні входи дуже складно. Зазвичай це робиться методом проб і помилок, тобто простим перебором різних комбінацій індикаторів і даних [27].
Входи нейромережі, що виучується «без вчителя», визначаються іншим чином, і перед такою нейромережею ставиться інша мета - виявлення закономірностей між будь-якими вхідними даними і індикаторами, які і подаються на вхід карти.
Архітектура карт Кохонена, на відміну від багатошарової нейромережі, дуже проста і є один-єдиним шаром нейронів, який організований у вигляді двомірної матриці. Користувачеві необхідно визначити лише розмір цієї матриці, тобто кількість нейронів по ширині і кількість нейронів по висоті.
Карти Кохонена дають візуальне відображення багатовимірних вхідних даних. У картах Кохонена аналізуються не тільки виходи нейронів (як у віпадку звичайної нейромережі), але також ваги нейронів і розподілу прикладів по нейронах. Оскільки карта Кохонена організована у вигляді двомірних грат, у вузлах якої розташовуються нейрони, то її дуже зручно відображувати на плоскості у вигляді «карти» з розфарбовуванням, залежним від величини аналізованого параметра нейрона.Саме за схожість такого типу зображення нейромережі з топографічними картами вони отримали назву карт Кохонена.
Таким чином, карти Кохонена, що самоорганізующиеся, є одним з видів нейронних мереж. Принципи роботи і вчення такої нейромережі були сформульовані фінським ученим Тойво Кохоненом в 1982 році. Основною ідеєю Т. Кохонена є введення в правило вчення нейрона інформації про його розташування. По Кохонену, нейромережу має один вхідний шар, з числом нейронів, рівним числу входів, і єдиний прихований (вихідний) шар нейронів, створюючий одновимірні (лінія) або двомірні (прямокутник) грати. По аналогії з топографічними картами таку нейромережу також називають картою Кохонена [28].
Для цієї парадигми вчення проводиться без «вчителя», тобто в процесі вчення немає порівняння виходів нейронів з еталонними значеннями.
В процесі навчання на вхід такої нейромережі поступово подаються навчальні приклади. Після подачі чергового прикладу визначається найбільш схожий нейрон, тобто нейрон, у якого скалярний добуток вагів і поданого на вхід вектора мінімально. Такий нейрон вважається переможцем і покликаний бути центром при підстроюванні вагів у сусідніх нейронів.
Правило вчення, запропоноване Кохоненом, передбачає змагання з врахуванням відстані нейронів від «нейрона-переможця.
Для нейрона-переможця функція сусідства дорівнює 1 і потім плавно (по лінійному або експоненціальному закону) зменшується при видаленні від нього. Таким чином, в процесі вчення підстроювання вагів відбувається не лише в одному нейроні - нейроні-переможцеві, але і в його околицях.
Після закінчення процесу вчення карта Кохонена класифікує вхідні приклади на групи схожих один з одним. Вся сукупність нейронів у вихідному шарі точно моделює структуру розподілу повчальних прикладів в багатовимірному просторі. Унікальність технології карт, що самоорганізующихся, полягає в перетворенні N-мерного простори в двух- або одновимірне. Єдине, що треба пам'ятати, - таке перетворення зв'язане з деякими помилками. Дві крапки, близько лежачі на карті Кохонена, будуть близькі і в N-мерном вхідному просторі, але не навпаки.