Смекни!
smekni.com

Економетричні моделі в економіці країни (стр. 1 из 4)

1. роль і місце економетричних моделей в управлінні економічними системами

Сучасні методи управління економічними системами та процесами базуються на широкому використанні математичних методів та ЕОМ. Застосовувати математику для розв’язування певних економічних задач почали дуже давно, сотні років тому. Але протягом останніх 50-60 років, коли економічна наука сягнула певних рубежів у своєму розвитку i в ній постали задачі, які не вдається розв’язати за допомогою традиційних економічних методів, математика посіла в цій науці одне з основних місць.

Сформувався напрям теоретично-практичних досліджень – економiко-математичне моделювання. Математичне моделювання є вираженням процесу матем5атизації наукового економічного знання. Математика, проникаючи в сутність економічної науки, приносить із собою точність та унiверсальнiсть розв’язків, строгість i довершеність наукових концепцій. З розвитком математики, електронно-обчислювальної техніки, загальнометодологічних та економічних наук дедалі ширше використовують математичні моделі.

Математична модель об’єкта (процесу, явища) містить три групи елементів:

1) характеристику об’єкта, яку потрібно визначити (невiдомi величини), – вектор Y = (yi);

2) характеристики зовнiшнiх (щодо модельованого об’єкта) умов, які змінюються, – X (xi);

3) сукупність внутрiшнiх параметрів об’єкта – А.

Множини параметрів X і A можуть розглядатись як екзогенні величини (тобто такі, які визначаються поза рамками моделі), а величини, що належать вектору Y, - як ендогенні (тобто такі, які визначаються за допомогою моделі).

Математичну модель можна тлумачити як особливий перетворювач зовнiшнiх умов об’єкта Х (входу) на характеристики об’єкта Y(виходу), які мають бути знайдені.

Залежно від способу вираження спiввiдношень між зовнішніми умовами, внутрiшнiми параметрами та характеристиками, які мають бути знайдені, математичні моделі поділяються на дві групи: структурні та функцiональнi.

Структурні моделі відбивають внутрішню органiзацiю об’єкта: його складові, внутрiшнi параметри, їх зв’язок із «входом» i «виходом» i т. ін. Розрізняють три види структурних моделей:

1) Yi = fj(A, X) (j Î J); (1.1)

2) Yi(A, X, Y) = 0(i Î I); (1.2)

З) iмiтацiйнi моделі.

У моделях першого виду всі невiдомi величини подаються у вигляді явних функцій від зовнiшнiх умов i внутрiшнiх параметрів об’єкта.

У моделях другого виду невiдомi визначаються одночасно із системи I рівнянь, нерівностей i т. ін.

В iмiтацiйних моделях невiдомi величини визначаються також одночасно із вхідними параметрами, але конкретний вигляд спiввiдношень невідомий. Моделі типу (1.1), (1.2) можна розв’язати за допомогою чисельних алгоритмів. Можливості побудови моделей (1.1) практично необмежені. Для розв’язування задачі (1.2), яка не зводиться до задачі (1.1), необхідно мати спеціальний алгоритм, за яким не тільки знаходять розв’язки, а й виявляють загальні властивості розв’язків, що не залежать від конкретних параметрів задачі.

Імiтацiйнi моделі не зводяться до чітко визначених математичних задач, а тому потрібно знаходити особливі способи для відшукання розв’язків. Такі моделі виникають у разі спроб дати математичний опис особливо складних об’єктів (складних систем). Для дослідження цих об’єктів (систем) використовуються порівняно нові математичні методи: теорія випадкових процесів, теорія ігор та статистичних рішень, теорія автоматів і т. ін. Активну роль у процесі такого моделювання відіграють ЕОМ.

Імітаційні моделі не мають чіткого зображення внутрішньої організації (структури) об’єкта, i тому їм належить проміжне місце між структурними та функціональними моделями.

Основна ідея функціональних моделей – пізнання сутності об’єкта через найважливiшi прояви цієї сутності: дiяльнiсть, функціонування, поводження. Внутрішня структура об’єкта при цьому вивчається, а тому iнформацiя про структуру не використовується. Функціональна модель описує поводження об’єкта так, що, задаючи значення «входу» Х, можна дістати значення «виходу» Y (без участі інформації про параметри):

Y = A (X). (1.3)

Побудувати функціональну модель - означає знайти оператор А, який пов’язує Х i Y.

Вiдмiнностi між структурними та функціональними моделями мають відносний характер. Вивчення структурних моделей дає одночасно цінну iнформацiю про поводження об’єкта. Водночас вивчення функціональних моделей супроводжується формулюванням гіпотез про внутрішню структуру об’єкта.

Економетричнi моделі належать до функціональних моделей. Вони кiлькiсно описують зв’язок між вихідними показниками Х економічної системи та результативним показником Y. У загальному вигляді економетричну модель можна записати так:

Y = f (X, u) (1.4)

де Х – вихiднi економiчнi показники;

u – випадкова, або стохастична, складова.

Показники Х бувають детермінованими i стохастичними. Адитивна складова u - це випадкова змінна, а отже, з огляду на те, що залежна змінна Y залежить від u, вона також стохастична. Звідси випливає висновок: економетрична модель є стохастичною.

Побудова i дослідження економетричних моделей мають певні особливості. Ці особливості пов’язані з тим, що економетричнi моделі є стохастичними. Вони описують кореляційно-регресiйний зв’язок між економічними показниками. Цей зв’язок кiлькiсно характеризує наявні закономiрностi економічних процесів та явищ. Отже, щоб побудувати економетричну модель, необхідно:

1) мати достатньо велику сукупність спостережень даних;

2) забезпечити однорiднiсть сукупності спостережень;

3) забезпечити точність вихідних даних.

2. економетрична модель і проблеми економетричного моделювання

Економетричне моделювання реальних соцiально-економiчних процесів i систем, як правило, спрямоване на досягнення двох типів кінцевих прикладних результатів:

отримання прогнозу економічних показників, що характеризують стан та розвиток економічної системи;

iмiтування різних можливих сценаріїв соцiально-економiчного розвитку економічної системи (багатоваріантний сценарій, розрахунки, ситуаційне моделювання).

У постановці задач економетричного моделювання доцільно визначати їхній iєрархiчний рівень i тип. Поставлені задачі можуть належати до макрорівня (країна, міждержавний аналіз), мезорiвня (регіони всередині країни) i мiкрорiвня (підприємства, фірми, сім’я) i бути спрямованими на розв’язок питань iнвестицiйної, фінансової або соціальної політики, ціноутворення, розподільних відносин i т. ін.

Економетрична модель містить набір регресійних рівнянь, що описують стохастичні зв’язки між досліджуваними економічними показниками, а також певні тотожності, які характеризують спiввiдношення між економічними показниками.

Найпоширеніший математичний вид досліджуваних взаємозв’язків лiнiйний (відносно параметрів) i адитивний за формою. При цьому можливі ситуації, коли одні й ті самі показники в одних рівняннях вiдiграють роль пояснюваних змінних, а в інших – пояснювальних (такі моделі називають системами одночасних рівнянь).

До основних проблем економетричного моделювання належать:

iдентифiкацiя змінних та висування гіпотези про специфiкацiю моделі;

специфiкацiя економетричної моделі;

методи оцінювання параметрів моделі;

верифiкацiя моделі;

прогноз пояснюваних змінних на основі моделі.

Розв’язання цих проблем значною мірою базується на математично-статистичному iнструментарiї. Велика увага приділяється методам багатовимірного аналізу i, передусім, методам розпізнавання соцiально-економiчних образів, їх типологiзацiї.

3. формування сукупності спостережень

Поняття сукупності спостережень є основою економетричного моделювання. Потрібно розрізняти одиницю спостереження – джерело даних і одиницю сукупності – носія ознак, що підлягають спостереженню. Ці поняття найбільш чітко розрізняються в соцiально-економiчнiй статистиці. Наприклад, під час перепису населення одиницею спостереження буде сім’я, а одиницею сукупності – окрема людина. У разі статистичних досліджень із застосуванням методів багатовимірного статистичного аналізу ці поняття часто збігаються. Тому в економетричному моделюванні здебільшого йтиметься про одиницю сукупності.

Сукупність спостережень можна подати у вигляді впорядкованого набору (матриці) даних параметрами n, m, T, де n – кiлькiсть одиниць сукупності (i =

); m – кiлькiсть ознак, які описують кожну одиницю (j =
); Т – проміжок часу, за який вивчається ознака певного спостереження (t =
). Наприклад, якщо через x позначити певну ознаку спостереження, то потрібно записати так: xij, або хijt, що означає j-та ознака i-го спостереження в період t.

За одиницю сукупності спостережень часто беруть певний економічний об’єкт, що функціонує. Вибрати одиницю сукупності – означає визначити рівень об’єкта моделювання (наприклад, великий технологічний агрегат, цех, підприємство, галузь i т. ін).

Розрізняють три способи формування вибірки: часову, просторову i просторово-часову.

Якщо сукупність спостережень вивчається у статиці (просторова вибірка), то всі дані можна зобразити у вигляді матриці розміром n × m, в якій кожний рядок несе iнформацiю про одиницю вибіркової сукупності, а стовпець характеризує певну ознаку.

Часова вибірка містить набір значень ознак функціонування окремого об’єкта в динамiцi m × T, тобто по суті складається з двовимірного чи багатовимірного часового ряду.

Просторово-часова вибірка являє собою комбiнацiю просторової i часової вибірок n × m × T.

Проблема формування сукупності спостережень та її однорiдностi досить важлива в економетричному моделюванні, бо економетрична модель кiлькiсно описує закономiрнiсть формування економічних процесів та явищ. А ця закономiрнiсть доволі повно може проявитись лише тоді, коли сукупність спостережень достатньо велика.