В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.
Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.
Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью.
Вывод:
Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,1061. Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а0 признается типичным (случайным).
Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =0 . Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а1 признается типичным (случайным).
5.1.2 Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Границы доверительных интервалов коэффициентов уравнения
Коэффициенты | Границы доверительных интервалов | |||
Для уровня надежности Р=0,95 | Для уровня надежности Р=0,683 | |||
нижняя | верхняя | нижняя | верхняя | |
а0 | -1548,8999 | 157,7979 | -1119,9924 | -271,1096 |
а1 | 0,9012 | 1,2776 | 0,9957 | 1,1830 |
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах -1548,8999 а0 157,7979, значение коэффициента а1 в пределах 0,9012 а1 1,2776. Уменьшение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения.
Определение практической пригодности построенной регрессионной модели.
Практическую пригодность построенной модели
можно охарактеризовать по величине линейного коэффициента корреляции r:· близость
к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;· близость
к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
В основе такой оценки лежит равенство R = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.
Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при
>0,7, т.е. при >0,7. Для индекса детерминации R2это означает выполнение неравенства R2 >0,5.При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство
0,7, а следовательно, и неравенство .С учетом вышесказанного, практическая пригодность построенной модели связи
оценивается по величине R2следующим образом:· неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;
· неравенство
означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").
Вывод:
Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =0,9132, R2 =0,8339. Поскольку и , то построенная линейная регрессионная модель связи пригодна (не пригодна) для практического использования.
Общая оценка адекватности регрессионной модели по F-критерию Фишера
Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии
может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.Вывод:
Рассчитанный уровень значимости αр индекса детерминации R2 есть αр=0. Так как он меньше(больше) заданного уровня значимости α=0,05, то значение R2 признается типичным (случайным) и модель связи между признаками Х и Y -695,5510+1,0894х применима (неприменима) для генеральной совокупности предприятий отрасли в целом.
Оценка погрешности регрессионной модели
Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии
. Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.Погрешность регрессионной модели выражается в процентах и рассчитывается как величина
.100.В адекватных моделях погрешность не должна превышать 12%-15%.
Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение
– в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).Вывод:
Погрешность линейной регрессионной модели составляет .100= .100=9,1749%, что подтверждает (не подтверждает) адекватность построенной модели -695,5510+1,0894х.
Задача 6
Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин
i.2) коэффициента эластичности КЭ;
6.1 Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.