Предположим, что неизвестные величины
последовательно измеряются некоторым измерительным прибором, прибавляющим случайную ошибку, распределенную по нормальному закону . Считая эти измерения независимыми между собой и обозначая результаты этих измерений через соответственно, запишемгде
-- независимые случайные величины, распределенные по закону . Основное априорное допущение состоит в том, что вектор принадлежит некоторому линейному подпространству евклидова -мерного пространства . Заметим, что измерения , полученные в результате опыта вовсе не обязаны принадлежать . Цель -- получить оценку для вектора неизвестных параметров , используя данные измерений .Так как
независимы и имеет распределение , нетрудно выписать функцию правдоподобия (т.е. совместную плотность распределения , см. также 6.6):В качестве искомой оценки будем искать точку
, в которой функция правдоподобия принимает максимальное значение:Выражение (38) переписывается в следующем виде:
где
-- обычное евклидово расстояние между векторами в . Отсюда видно, что максимальное значение достигается в такой точке , для которойИз курса линейной алгебры известно, что такая точка единствена и представляет собой проекцию
на подпространство : . Поскольку задача свелась к минимизации суммы квадратов, этот метод получил название метода наименьших квадратов.Корреляционный анализ позволяет количественно оценить связи между большим числом взаимодействующих экономических явлений как между случайными величинами. Его применение делает возможным проверку различных экономических гипотез о наличии и силе связи между двумя величинами или группой величин. Корреляционный анализ тесно связан с регрессионным анализом, задача которого состоит в экспериментальном определении параметров корреляционных зависимостей (см. §2.5 ) между экономическими показателями путем наблюдения за характером их изменения. Одним из основных методов регрессионного анализа является метод наименьших квадратов, краткое содержание которого было изложено в §2.5. Модели, полученные с помощью регрессионного анализа, позволяют прогнозировать варианты развития экономических процессов и явлений, изучить тенденции изменения экономических показателей, т.е. служат инструментом научно-обоснованных предсказаний. Результаты прогноза являются исходным материалом для постановки реальных экономических целей и задач, для выявления и принятия наилучших управленческих решений, для разработки хозяйственной и финансовой стратегий в будущем.
Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.
Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.
Первые начальные моменты представляют собой математические ожидания величин Х и Y, входящих в систему
σ1,0=mx σ0,1=my.
Совокупность математических ожиданий mx , my представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки (Х, Y).
Важную роль на практике играют также вторые центральные моменты систем. Два из них представляют собой дисперсии величин Х и Y
,характеризующие рассеивание случайной точки в направлении осей Ox и Oy.
Особую роль играет второй смещенный центральный момент:
,называемый корреляционным моментом (иначе - "моментом связи")случайных величин Х и Y.
Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеивания величин Х и Y, еще и связь между ними. Для того, чтобы убедиться в этом отметим, что корреляционный момент независимых случайных величин равен нулю.
Заметим, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Поэтому для характеристики связи между величинами (Х;Y) в чистом виде переходят от момента Kxy к характеристике
,где σx, σy - средние квадратичные отклонения величин Х и Y. Эта характеристика называется коэффициентом корреляции величин Х и Y.
Согласно определениям момента корреляции и коэффициента корреляции
. (6.37)
Пусть имеется выборка
. Выборочным коэффициентом корреляции называется оценка истинного коэффициента , полученная по формуле. (6.38)
Здесь
, , - выборочные средние значения и дисперсии. Выборочный коэффициент корреляции является случайной величиной. Отсюда после вычисления возникает необходимость проверки гипотезы о значимости полученной оценки. Проверяется гипотеза о равенстве нулю генерального коэффициента корреляции против альтернативы о неравенстве нулю коэффициента корреляции. Для проверки гипотезы против альтернативы используют статистику. (6.39)