Смекни!
smekni.com

Теоретические основы математических и инструментальных методов экономики (стр. 14 из 22)

При оценке качества функционирования какой-либо имитационной модели эксперты определяют, какие параметры модели главные, а какие – второстепенные; устанавливают желаемые пределы изменения параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта входит также изменение условий моделирования в тех случаях, когда после проведения модельных экспериментов выявляются новые неучтенные факторы.

Эконометрика. Основные понятия эконометрического моделирования

Под статистическими данными понимают систематизированные и группированные однородные, количественные сведения о реальной экономической деятельности за прошлые периоды времени или результаты многократно проводимых экспериментов и наблюдений. Такие данные играют важную роль в экономико-математическом моделировании, в частности, для

· построения аналитического вида функций, описывающих взаимосвязи между экономическими величинами;

· оценки параметров и проверки адекватности экономико-математических моделей реальным явлениям;

· выявления закономерностей, которым подчиняются экономические явления, и тенденций развития динамических процессов.

На стыке экономической практики и математической статистики в начале 30-х годов зародилась новая самостоятельная дисциплина, получившая название "Эконометрика".

Эконометрика - это наука, которая изучает статистические закономерности в экономике.

Методологическая особенность эконометрики заключается в применении достаточно общих гипотез о статистических свойствах экономических параметров и ошибок при их измерении. Полученные при этом результаты могут оказаться нетождественными тому содержанию, которое вкладывается в реальный объект. Поэтому важная задача эконометрики - создание как более универсальных, так и специальных методов для обнаружения наиболее устойчивых характеристик в поведении реальных экономических показателей. Эконометрика разрабатывает методы подгонки формальной модели с целью наилучшего имитирования ею поведения моделируемого объекта на основе гипотезы о том, что отклонения модельных значений параметров от их реально наблюдаемых случайны и вероятностные характеристики их известны.

Математическая статистика является тем универсальным аппаратом, который удачно вписывается в содержание различных эконометрических исследований. Такие ее разделы, как корреляционный и регрессионный анализы, метод наименьших квадратов и прогнозирование, как нельзя лучше подходят для выявления статистических закономерностей в экономике.

Корреляционный анализ позволяет количественно оценить связи между большим числом взаимодействующих экономических явлений как между случайными величинами. Его применение делает возможным проверку различных экономических гипотез о наличии и силе связи между двумя величинами или группой величин. Корреляционный анализ тесно связан с регрессионным анализом, задача которого состоит в экспериментальном определении параметров корреляционных зависимостей (см. §2.5 ) между экономическими показателями путем наблюдения за характером их изменения. Одним из основных методов регрессионного анализа является метод наименьших квадратов, краткое содержание которого было изложено в §2.5. Модели, полученные с помощью регрессионного анализа, позволяют прогнозировать варианты развития экономических процессов и явлений, изучить тенденции изменения экономических показателей, т.е. служат инструментом научно-обоснованных предсказаний. Результаты прогноза являются исходным материалом для постановки реальных экономических целей и задач, для выявления и принятия наилучших управленческих решений, для разработки хозяйственной и финансовой стратегий в будущем.

Как составная часть математической экономики, эконометрика вполне естественно вписывается в общий алгоритм экономико-математических исследований. Эконометрические исследования начинаются после того, как

· определен общий вид математической модели с неизвестными параметрами;

· собраны все необходимые статистические данные, имеющие отношение к оцениваемым параметрам;

· поставлена задача отыскания значений неизвестных параметров, обеспечивающих наилучшее приближение модельных значений к их значениям, наблюдавшимся в действительности.

Эконометрика как раз и занимается методами получения лучших оценок параметров эконометрических моделей, конструируемых в прикладных целях.

Эконометрические модели по сравнению с аналитическими более точны и подробны, не требуют грубых допущений и упрощений, позволяют учесть большое число факторов. Основные их недостатки - громоздкость, плохая обозримость, большой расход машинного времени при их построении и анализе и крайняя трудность поиска оптимальных решений, которые приходится искать "на ощупь", путем догадок и проб (в отличие от более приспособленных к оптимизационным задачам аналитических моделей). Наиболее эффективная методика экономико-математических исследований - это совместное применение аналитических и эконометрических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контуры основных закономерностей. Уточнение же этих закономерностей - прерогатива эконометрических моделей. С этой точки зрения важная задача эконометрики - проверка теоретико-экономических положений и выводов на фактическом (эмпирическом) материале при помощи методов математической статистики.

В общем случае эконометрическая модель может содержать несколько уравнений, а в каждом уравнении - несколько переменных. Задача оценивания параметров такой разветвленной модели решается с помощью сложных и причудливых методов. Однако все они имеют одну и ту же теоретическую основу. Поэтому для получения начального представления о содержании эконометрических методов мы ограничимся в последующих параграфах рассмотрением простой линейной регрессии. Термин "регрессия" используется для описания природы связи между переменными, а термин "корреляция" - для измерения тесноты связи.

По мере возрастания сложности после статистического анализа, который касается поведения отдельных переменных, идет линейная регрессия с двумя переменными (парная регрессия). Простая линейная регрессия связана с тем, что называется двумерным распределением случайных величин, т.е. распределением двух переменных. Понятно, что использование двух переменных дает большую информацию, нежели одной. Например, доход от продажи товара можно анализировать, используя только данные о доходе на прошлых периодах времени вне связи с другими факторами (статистический анализ). Но мы получим гораздо более богатую информацию, если примем во внимание другие факторы, которые влияют на объем продаж: спрос, цена товара, цена товара-конкурента, период времени, затраты на рекламу и др. Если при этом расходы на рекламу явились бы главным фактором, определяющим объем продаж, то знание вида связи объема продаж и расходов на рекламу было бы весьма полезным для планирования финансовой политики компании. Точно так же нас могут интересовать двумерные распределения объема продаж и цены товара, дохода от продаж и уровня спроса и т.д. Другими примерами линейной регрессии с двумя переменными могли бы быть соотношения между издержками производства и квалификацией рабочих, между качеством продукции и продолжительностью рабочего дня, между весом и возрастом кур и т.д.

Линейную регрессию, как математическую модель, можно использовать для того, чтобы делать какие-то прогнозы или предсказания. Например, любая курица, реальный вес которой значительно отличается от прогнозируемого среднего веса, может быть подвергнута обследованию. В результате последующего анализа могут быть выявлены причины отклонения веса и приняты меры по улучшению рациона питания или изменению режима обслуживания и условий содержания.

Основным недостатком, присущим линейным эконометрическим моделям с двумя переменными, является их неадекватность к реальной действительности. Это вызвано, во-первых, тем, что статистическая (и, в частности, корреляционная) зависимость между экономическими величинами практически никогда не бывает в чистом виде линейной; во-вторых, многие факторы, влияющие на эти две переменные, остаются за пределами модели, т.е. оказываются неучтенными.

Основы системного анализа. Формулировка проблемы. Определение целей. Формирование критериев. Генерирование альтернатив. Выбор. Интерпретации и анализ ожидаемых результатов.

Системный анализ – методология исследования сложных объектов как систем. Эта методология есть эффективным способом решения сложных, не совсем четко сформулированных проблем. В задачах системного анализа любой объект рассматривается не как единое целое, а как система взаимосвязанных частей (объектов), их взаимосвязей и характеристик. Системный анализ можно свести к уточнению сложной проблемы, её структурированности относительно совокупности задач, которые решаются путем детализации целей, построение методов достижения этих целей с помощью экономико-математических и других методов..

Системный анализ, зародившись в недрах общественных и биологических наук, перешел к "освоению" технических наук. Однако системы общественные и социальные, биологические и экологические, технические системы, информационные системы и системы научных знаний - это все же системы с совершенно различными характеристиками и даже с различной терминологией. Вследствие этого формулировки основных положений системного анализа применительно к конкретным классам систем иногда воспринимаются как слишком общие и даже иносказательные; с другой стороны, слишком специальная терминология конкретизирует, но одновременно и сильно сужает область применения выработанных формулировок. По-видимому, все же единственно разумным путем представляется "перевод" основных положений системного анализа с "общего" языка на язык конкретной области знаний, к которой относится исследуемый объект.