Является ли экономико-математическая модель дескриптивной или нормативной, зависит не только от ее математической структуры, но от характера использования этой модели. Например, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода. Но эта же математическая модель становится нормативной, когда она применяется для расчетов сбалансированных вариантов развития народного хозяйства, удовлетворяющих конечные потребности общества при плановых нормативах производственных затрат.
Многие экономико-математические модели сочетают признаки дескриптивных и нормативных моделей. Типична ситуация, когда нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Например, межотраслевая модель может включать функции покупательского спроса, описывающие поведение потребителей при изменении доходов. Подобные примеры характеризуют тенденцию эффективного сочетания дескриптивного и нормативного подходов к моделированию экономических процессов. Дескриптивный подход широко применяется в имитационном моделировании.
По характеру отражения причинно-следственных связей различают модели жестко детерминистские и модели, учитывающие случайность и неопределенность. Необходимо различать неопределенность, описываемую вероятностными законами, и неопределенность, для описания которой законы теории вероятностей неприменимы. Второй тип неопределенности гораздо более сложен для моделирования.
По способам отражения фактора времени экономико-математические модели делятся на статические и динамические. В статических моделях все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.
Модели экономических процессов чрезвычайно разнообразны по форме математических зависимостей. Особенно важно выделить класс линейных моделей, наиболее удобных для анализа и вычислений и получивших вследствие этого большое распространение. Различия между линейными и нелинейными моделями существенны не только с математической точки зрения, но и в теоретико-экономическом отношении, поскольку многие зависимости в экономике носят принципиально нелинейный характер: эффективность использования ресурсов при увеличении производства, изменение спроса и потребления населения при увеличении производства, изменение спроса и потребления населения при росте доходов и т.п. Теория "линейной экономики" существенно отличается от теории "нелинейной экономики". От того, предполагаются ли множества производственных возможностей подсистем (отраслей, предприятий) выпуклыми или же невыпуклыми, существенно зависят выводы о возможности сочетания централизованного планирования и хозяйственной самостоятельности экономических подсистем.
По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые. Полностью открытых моделей не существует; модель должна содержать хотя бы одну эндогенную переменную. Полностью закрытые экономико-математические модели, т.е. не включающие экзогенных переменных, исключительно редки; их построение требует полного абстрагирования от "среды", т.е. серьезного огрубления реальных экономических систем, всегда имеющих внешние связи. Подавляющее большинство экономико-математических моделей занимает промежуточное положение и различаются по степени открытости (закрытости).
Для моделей народнохозяйственного уровня важно деление на агрегированные и детализированные.
В зависимости от того, включают ли народнохозяйственные модели пространственные факторы и условия или не включают, различают модели пространственные и точечные.
Таким образом, общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.
В виде примеров можно привести простейшие модели – транспортная задача, задача распределения ресурсов, и прочее.
Дескриптивные модели представляют собой в основном статистические модели (кривые роста, регрессионные линии), предназначенные для исследования объектов путем установления количественных соотношений между их характеристиками или параметрами.
Примеры:
1. Требуется определить зависимость потребления бытовых услуг от уровня дохода населения, обеспеченности бытовыми предметами на душу населения и других факторов потребления. Для этого составляют регрессионное уравнение
где Y – потребление бытовых услуг на душу населения; - факторы потребления; - коэффициенты уравнения. Если известны коэффициенты, то зависимость потребления бытовых услуг от принятых факторов считается определенной. Она отражает реальную ситуацию только в среднем, или в статистическом смысле.
2. Требуется определить количество заместителей директора для типовых структур управления предприятием. В этом случае проводят статистическое исследование численности указанной категории работников на существующих предприятиях и выводят степенное уравнение. При определенной специализации количество заместителей директора определяют по формуле
,
где - численность промышленного персонала; - основные и оборотные фонды.
Модели без управления применяются для изучения фактически существующих процессов, без вмешательства в их течение. К моделям без управления принадлежат модели экономики страны, расширенного воспроизводства, прогнозирования рождаемости, численности населения и т.д. Как правило, они дают общее представление об объекте. Процессы в моделируемом объекте отображаются в агрегированном виде и максимально обобщены. Поэтому модели без управления не дают полного представления об объекте моделирования и пригодны для изучения только самых общих изменений и тенденций. Модели без управления позволяют изучать явления в целом, комплексно и устанавливают общие фундаментальные свойства объектов и процессов.
Оптимизационные модели. Их появление и применение вызвано необходимостью решения практических задач экономики и техники. Особенностью оптимизационных моделей является целенаправленность решения и явная оценка эффективности (качества) различных вариантов решения. В отличие от моделей без управления оптимизационные модели предполагают выявление цели управления и построение целевой функции.
Суть получения оптимального решения на модели заключается в выборе из множества возможных решений одного, обеспечивающего максимальную эффективность.
Задача об оптимальной перевозке грузов (транспортная задача). Пусть осуществляется производство некоторого товара в пунктах . Объем производства товара в каждом пункте равен соответственно . Товар необходимо доставить в магазины или потребителям, находящимся в других населенных пунктах: . Известна потребность каждого потребителя в товаре: . Задана также стоимость транспортировки товара из каждого пункта производства каждому потребителю . Требуется составить план завоза товара в магазины, обеспечивающий удовлетворение их спроса при минимальных транспортных издержках.
Транспортная задача
Пусть необходимо перевезти некоторые партии товара из трех складов четырем покупателям, при этом известен объем товара на каждом складе и требуемое количество для каждого покупателя, также в таблице указаны стоимости перевозки от каждого склада к каждому покупателю. Найти оптимальный по цене план перевозок.
14 | 28 | 21 | 28 | 27 |
10 | 17 | 15 | 24 | 20 |
14 | 30 | 25 | 21 | 43 |
33 | 13 | 27 | 17 |
Построение оптимального плана, методом северо-западного угла
1427 | 28 | 21 | 28 | 27 |
106 | 1713 | 151 | 24 | 20 |
14 | 30 | 2526 | 2117 | 43 |
33 | 13 | 27 | 17 |
Расчет потенциалов
если .