Функционал F, заданный на множестве допустимых процессов, описывает цель, согласно которой оптимизируется процесс.
В задачах оптимального управления для непрерывных систем будем рассматривать функционалы следующего вида:
, (4.2.5)
где ; - заданные функции. Выражение (4.2.5) позволяет вычислить для каждого допустимого процесса определенное значение и тем самым задать функционал на множестве допустимых процессов. Для этого необходимо подставить x(t), вместо аргументов функции , которая становится функцией времени, после чего вычислить ее интеграл. Затем к значению интеграла прибавляем значение функции при .
Функционал состоит из двух частей: и . Первое из этих слагаемых оценивает качество процесса на на всем промежутке , второе слагаемое - качество конечного состояния системы. Иногда в задачах оптимального управления конечное состояние системы задается. В этом случае второе слагаемое функционала (4.2.5) есть величина постоянная и, следовательно, не влияет на его минимизацию. Такие задачи называются задачами с фиксированным правым концом траектории.
Для задач оптимизации в дискретных системах функционал имеет вид
. (4.2.6)
К функционалу (4.2.6) относятся все замечания и комментарии, сделанные к функционалу (4.2.5).
Таким образом задача оптимизации управляемых процессов сводится к постановке задачи о минимуме функционала (4.2.5) в непрерывном и (4.2.6) в дискретном случае на множестве М допустимых процессов , удовлетворяющих ограничениям 1)-4).
Эта задача может решаться в двух вариантах:
1. Определить оптимальный процесс , чтобы
;
2. Определить минимизирующую последовательность , чтобы
.
В теории оптимального управления термины «состояние» и «управление» имеют содержательный смысл. Он заключается в том, что, задавая управление , мы задаем и траекторию процесса , а изменяя управляющие воздействия - «управляем» процессом.
Из условия можно выделить ограничения на состояние и управление:
, , (4.2.7)
где - проекция множества на пространство X; - сечение множества при данном
В задачах оптимального управления область возможных состояний часто является постоянной или совпадает со всем пространством, а область возможных управлений не зависит от x. Эти предположения выполняются в большом числе практических случаев, что упрощает решение задачи.
Выше предполагалось, что промежуток времени фиксирован, т. е. задан момент Т окончания процесса. Однако возможны постановки задач, где этот момент не задан, а определяется решением задачи. Это относится, в частности, к так называемым задачам о быстродействии, когда требуется перевести систему (4.2.4) из заданного начального состояния х(0)=х0 в заданное конечное состояние , минимизируя при этом время протекания процесса.
Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации этих моделей используются разные основания.
По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).
Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем - отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.д.
Остановимся более подробно на характеристике таких классов экономико-математических моделей, с которыми связаны наибольшие особенности методологии и техники моделирования.
В соответствии с общей классификацией математических моделей они подразделяются на функциональные и структурные, а также включают промежуточные формы (структурно-функциональные). В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.
Выше уже показывались различия между моделями дескриптивными и нормативными. Дескриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться?, т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть?, т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.
Применение дескриптивного подхода в моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике, установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при неизменяющихся условиях или протекающих без внешних воздействий. Примерами дескриптивных моделей являются производственные функции и функции покупательского спроса, построенные на основе обработки статистических данных.