Получив некоторое представление о существующих подходах к классификации игр, можно остановиться на оценках игры.
Рассмотрим матричную игру, представленную матрицей выигрышей m´n, где число строк i =
а число столбцов j = (см. табл.1). Применим принцип получения максимального гарантированного результата при наихудших условиях. Игрок 1 стремится принять такую стратегию, которая должна обеспечить максимальный проигрыш игрока 2. Соответственно игрок 2 стремится принять стратегию, обеспечивающую минимальный выигрыш игрока 1. Рассмотрим оба этих подхода.Подход игрока 1. Он должен получить максимальный гарантированный результат при наихудших условиях. Значит, при выборе отвечающей этим условиям своей чистой стратегии он должен выбрать гарантированный результат в наихудших условиях, т.е. наименьшее значение своего выигрыша aij, которое обозначим
a.i=
. (1.1)Чтобы этот гарантированный эффект в наихудших условиях был максимальным, нужно из всех a.i, выбрать наибольшее значение. Обозначим его a и назовем чистой нижней ценой игры (максимин):
a.=
(1.2)Таким образом, максиминной стратегии отвечает строка матрицы, которой соответствует элемент а. Какие бы стратегии ни применял игрок 2, игрок 1 максиминной чистой стратегией гарантировал себе выигрыш не меньший, чем а. Таково оптимальное поведение игрока 1.
Подход игрока 2. Своими оптимальными стратегиями он стремится уменьшить выигрыш игрока 1, поэтому при каждой j -й чистой стратегии он отыскивает величину своего максимального проигрыша
(1.3)в каждом j -м столбце, т.е. определяет максимальный выигрыш игрока 1, если игрок 2 применит j -ю чистую стратегию. Из всех своих п 7-х чистых стратегий он отыскивает такую, при которой игрок 1 получит минимальный выигрыш, т.е. определяет чистую верхнюю цену игры (минимакс):
Чистая верхняя цена игры показывает, какой максимальный выигрыш может гарантировать игрок 1, применяя свои чистые стратегии, - выигрыш, не меньший чем а. Игрок 2 за счет указанного выше выбора своих чистых стратегий не допустит, чтобы игрок 1 мог получить выигрыш, больший чем β. Таким образом, минимаксная стратегия отображается столбцом платежной матрицы, в котором находится элемент β (см. табл. 1). Она является оптимальной чистой гарантирующей стратегией игрока 2, если он ничего не знает о действиях игрока 1.
Чистая цена игры ν - цена данной игры, если нижняя и верхняя ее цены совпадают. В этом случае игра называется игрой с седловой точкой.
Если в матричной игре отсутствует седловая точка в чистых стратегиях, то находят верхнюю и нижнюю цены игры. Они показывают, что игрок 1 не получит выигрыша, превосходящего верхнюю цену игры, и что игроку 1 гарантирован выигрыш, не меньший нижней цены игры.
Смешанная стратегия игрока - это полный набор его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями. Подведем итоги сказанного и перечислим условия применения смешанных стратегий:
• игра без седловой точки;
• игроки используют случайную смесь чистых стратегий с заданными вероятностями;
• игра многократно повторяется в сходных условиях;
• при каждом из ходов ни один игрок не информирован о выборе стратегии другим игроком;
• допускается осреднение результатов игр.
Применяются следующие обозначения смешанных стратегий.
Для игрока 1 смешанная стратегия, заключающаяся в применении чистых стратегий А1, А2, ..., Ат с соответствующими вероятностями р1, р2, ..., рт.
где
.Для игрока 2
где
.qj — вероятность применения чистой стратегии Bj.
В случае когда рi= 1, для игрока 1 имеем чистую стратегию
(1.7)Чистые стратегии игрока являются единственно возможными несовместными событиями. В матричной игре, зная матрицу А (она относится и к игроку 1, и к игроку 2), можно определить при заданных векторах
и средний выигрыш (математическое ожидание эффекта) игрока 1: (1.8)где
и – векторы;pi и qi – компоненты векторов.
Путем применения своих смешанных стратегий игрок 1 стремится максимально увеличить свой средний выигрыш, а игрок 2 - довести этот эффект до минимально возможного значения. Игрок 1 стремится достигнуть
(1.9)Игрок 2 добивается того, чтобы выполнялось условие
(1.10)Обозначим
и векторы, соответствующие оптимальным смешанным стратегиям игроков 1 и 2, т.е. такие векторы и , при которых будет выполнено равенство (1.11)Цена игры - средний выигрыш игрока 1 при использовании обоими игроками смешанных стратегий. Следовательно, решением матричной игры является:
1)
– оптимальная смешанная стратегия игрока 1;2)
– оптимальная смешанная стратегия игрока 2;3) g – цена игры.
Смешанные стратегии будут оптимальными (
и ), если образуют седловую точку для функции т.е. (1.12)Существует основная теорема математических игр.
Для матричной игры с любой матрицей А величины
и (1.13)существуют и равны между собой: a = b = g.
Следует отметить, что при выборе оптимальных стратегий игроку 1 всегда будет гарантирован средний выигрыш, не меньший чем цена игры, при любой фиксированной стратегии игрока 2 (и, наоборот, для игрока 2). Активными стратегиями игроков 1 и 2 называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностями, отличными от нуля. Значит, в состав оптимальных смешанных стратегий игроков могут входить не все априори заданные их стратегии.
Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных смешанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 2´2. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следует отказываться. При отсутствии седловой точки можно получить две оптимальные смешанные стратегии. Как уже отмечалось, эти смешанные стратегии записываются так:
Значит, имеется платежная матрица
(1.15)Приэтом
a11p1 + a21p2 = g; (1.16)
a12p1 + a22p2 = g; (1.17)
p1 + p2 = 1. (1.18)
a11p1 + a21(1 – p1) = a12p1 + a22(1 – p1); (1.19)
a11p1 + a21 – a21p1 = a12p1 + a22 – a22p1, (1.20)
откуда получаем оптимальные значения
и : (1.21) (1.22)Зная
и , находим g: