Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации.
Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.
1.5. Нечисловые экономические величины
В теоретических и практических задачах экономики и менеджмента постоянно используются различные величины, обычно рассматриваемые как числовые. Например, рыночная цена товара, прибыль предприятия, индекс инфляции, валовой внутренний продукт, чистая приведенная величина для потока платежей и т.д. При более тщательном анализе оказывается, что подобные величины не имеют определенного численного значения, они размыты, имеют нечисловой характер, и описывать их следует с помощью нечисловых математических понятий, относящихся к тем или иным классам объектов нечисловой природы, таким, как нечеткие множества, интервалы, распределения вероятностей и др.
Действительно, можно ли считать, что существует рыночная цена на некоторый товар, выраженная числом? Рассмотрим всем привычный товар - хлеб. Для определенности рассмотрим стандартный батон белого хлеба, который стоил 25 копеек в 1990 г. В настоящее время (июнь 2001 г.) в различных торговых точках Москвы его можно купить по ценам от 6 руб. 50 коп. до 7 руб. 30 коп. Сотрудники Института высоких статистических технологий и эконометрики в течение нескольких лет собирала информацию о ценах на 35 продовольственных товаров в 11 "точках" Москвы и Подмосковья (итоги подведены в статье [9]), и максимальная из отмеченных цен превышала минимальную, как правило, на 30-50%. Можно говорить о цене товара при конкретном акте купли-продажи, при покупке в конкретном магазине, но нельзя говорить о конкретном числовом значении рыночной цены товара. Так, говорить о "рыночной цене" конкретной квартиры (не в новостройке) бессмысленно. Цена выявится только в результате соглашения продавца и покупателе при совершении акта купли-продажи. С другой стороны, полностью отказываться от этого укоренившегося в литературе понятия нецелесообразно. Мы предлагаем принять, что рыночная цена - объект нечисловой природы, и описывать ее для стандартного батона белого хлеба, например, в виде интервала [6,50; 7,30] руб.
Анализируя реальные данные, убеждаемся, что интервальный характер имеют рыночные цены на двигатели, черный и цветной металл, сплавы, электроэнергию, нефть, бензин, автоприборы и автомобили, трактора, различные виды приводной техники и другие промышленные товары, точно так же как и на разнообразные услуги. Цены зависят от конкретного договора между поставщиком и потребителем. Часто появляется дополнительный мешающий фактор - инфляция. Так, с сентября 1995 г. по январь 1996 г. доллар США подешевел в нашей стране почти в 2 раза (если сравнивать по покупательной способности в области продовольственных товаров).
Нечисловой характер имеют не только цены. При обсуждении понятия "прибыль предприятия" начнем с очевидной бессмысленности выражения "максимизация прибыли" без указания интервала времени, за который прибыль максимизируется. Только задав интервал времени, можно принять оптимальные решения и рассчитать ожидаемую прибыль. Ясно, что оптимальные решения зависят от интервала планирования. Известная в экономической теории проблема "горизонта планирования" состоит в том, что оптимальное поведение зависит от того, на какое время вперед планируют, а выбор этого горизонта не имеет рационального обоснования. В монографии [5] рассмотрен ряд примеров указанной зависимости и предложено использовать асимптотически оптимальные планы. Дополнительная сложность состоит в том, что будущая прибыль не может быть определена точно, а потому сама должна описываться как объект нечисловой природы. Итак, задача "максимизации прибыли" может приобрести точный смысл, например, лишь как максимизация нечеткой прибыли на нечетком интервале времени. Оптимизация в случае нечетких переменных рассматривалась в литературе (см., например, [10]), однако пока не получила широкого практического внедрения.
Для приведения экономических величин к одному моменту времени (к сопоставимым ценам) используются индексы инфляции, в другой терминологии, дефляторы. Рассчитывают их с помощью тех или иных потребительских корзин. При этом на нечеткость "рыночных цен" товаров накладывается произвол в выборе состава потребительской корзины и объемов потребления. Теоретический анализ этой ситуации привел нобелевского лауреата по экономике В.В.Леонтьева к выводу о принципиальной невозможности сравнения экономических величин, относящихся к различным моментам времени [11]. Возможный выход состоит в задании индекса инфляции в интервальном виде. Так, расчеты по собранным Институтом высоких статистических технологий и эконометрики данным о ценах показывают, что для Москвы индекс инфляции с марта 1991 г. по апрель 1999 г. описывается интервалом [21,5; 24,0] (при использовании деноминированных рублей).
Еще более размыты обобщенные макроэкономические показатели типа "валового внутреннего продукта" (ВВП), особенно при их сравнении по годам и странам. По мнению известного экономиста О.Моргенштерна [12] подобные макроэкономические показатели могут быть определены лишь с точностью 5-10%. Однако, если пользоваться одной и той же методикой расчета, то можно заметить и изменения в 0,1 %. Проблема в том, что сама методика может вызывать сомнения. Например, по применяемой Госкомстатом РФ "системе национальных счетов" банковские услуги составляют 13% ВВП. С точки зрения здравого смысла это - абсурдно высокая величина. Она объясняется тем, что, например, выдача кредита в 1 миллион рублей рассматривается как услуга стоимостью в 1 миллион рублей, эквивалентная выпечке и продаже 150 000 батонов хлеба. При всей высокой оценке тяжкого труда банковских боссов, клерков и охранников трудозатраты крестьян, мукомолов, пекарей, транспортников и продавцов 150 000 батонов хлеба, очевидно, несоизмеримо выше.
Нечеткость в неявной форме присутствует и в натуральных показателях. Пусть, например, выпущена партия из 1000 автомашин определенной марки. Нечеткость, связанная с этой партией, состоит в неопределенности реального срока службы автомашин, полезных и вредных эффектов от их эксплуатации. Для снятия этих неопределенностей необходимо, в частности, экономически оценить потери от гибели людей в автокатастрофах. Сколько стоит жизнь человека? При всем уважении к оценкам страховых компаний сама постановка этого вопроса вызывает неловкость. Многие этические и религиозные учения исходят из бесценности человеческой жизни. Из-за принципиальной недопустимости выражения стоимости человеческой жизни в денежных единицах не получили распространения, в частности, методы статистического контроля качества, основанные на учете народнохозяйственного ущерба от пропуска дефектных изделий при контроле.
Более подробно рассмотрим проблемы управления инвестиционными процессами. Одна из них - проблема сравнения инвестиционных проектов. С чисто финансовой точки зрения такой проект - это финансовый поток (cashflow), другими словами, поток платежей и поступлений, т.е. последовательность моментов времени, каждому из которых соответствует некоторая величина платежей (для определенности учитываем их со знаком "минус") или поступлений (учитываем со знаком "плюс"). Как оценивать такие потоки в целом, как их сравнивать? Из многих характеристик потоков платежей рассмотрим здесь две - чистую приведенную величину, называемую в отечественных публикациях также чистой текущей стоимостью или чистым дисконтированным доходом (есть и иные названия) и обозначаемую NPV (Net Present Value), и внутреннюю норму доходности, или прибыли IRR (Internal Rate of Return).
При определении NPV, как известно, для приведения величин платежей и поступлений к одному моменту времени используется постоянный дисконт-фактор. В реальности дисконт-фактор не является заранее известной функцией от времени и зависит от динамики как макроэкономических показателей - ставки рефинансирования Центрального банка РФ и индекса инфляции, так и микроэкономических - финансового положения инвестора, кредитной и депозитной ставок конкретного банка и др.. Кроме того, размеры и моменты осуществления платежей и поступлений также могут быть известны лишь с некоторой точностью. Следовательно, как функция от неопределенных (размытых) величин такая характеристика инвестиционного проекта, как NPV, сама является неопределенной. Лишь частично эту неопределенность можно снять, рассматривая NPV как функцию одной независимой переменной - дисконт-фактора. Если все перечисленные неопределенности можно описать интервалами (т.е. задать границы - "от" и "до"), то NPV также описывается интервалом, границы которого можно рассчитать с помощью подходов, развитых в статистике интервальных данных (см. главу 9 ниже). В результате в ряде случаев становится невозможным сделать однозначный выбор при сравнении двух инвестиционных проектов по NPV. Дело в том, что сравнение чисел можно провести всегда, а сравнение интервалов - лишь тогда, когда они не пересекаются. Если же пересекаются - целесообразно заявить об эквивалентности двух рассматриваемых инвестиционных проектов по чистой текущей стоимости NPV.