Як змінна х1 тут виступає змінна х, а як змінна х2 - змінна y. Матриця А, вектори F і z в цьому випадку приймуть вигляд:
А =
, F = , z = ,Порядок рішення системи нелінійних рівнянь методом Ньютона-Канторовича полягає в послідовному виконанні наступних дій:
Знайти початкове (нульове) наближення х0 шуканого кореня заданої системи рівнянь. Для випадку n=2 це можна зробити графічним методом, побудувавши графіки кожної з функцій і приблизно визначивши координати точок перетинів графіків. В цьому випадку вектор початкового наближення може мати вигляд
;Привести задану систему до вигляду (1), перенести все з правої частини рівняння в ліву;
Записати в аналітичному вигляді матрицю А, використовуючи формулу (8);
Приймемо j=0;
Підставимо значення хjв аналітичні вирази для матриці А і вектора F;
Знайдемо зворотну матрицю А-1;
По формулах (12) знайдемо вектор zj і вектор хj+1;;;
Знайдемо норму вектор zj;
Якщо норма вектора zj більше заданої точності обчислення (норма більша за ε) - наростимо значення j на одиницю і повернемося до пункту 5 цього переліку;
За знайдене рішення приймемо останнього набутого значення вектора х.