Смекни!
smekni.com

Решения задач линейного программирования геометрическим методом (стр. 5 из 5)

Пусть х1 и х2 – количество единиц корма, которые должны получать лисиа и песец, соответственно. Количество единиц каждого вида корма, необходимого для выращивания одного животного запишем в следующую систему неравенств:

1 + 3х2 ≤ 180,

4x1 + 1x2 ≤ 240,

6x1 + 7x2 ≤ 426,

x1, x2 ≥ 0.

Максимальная прибыль от реализации шкурок выразим следующей функцией : F = 16x1 + 12x2 => max.

Изобразим многоугольник решений данной задачи.

В ограничениях задачи поменяем знаки неравенства на знаки равенства.

Построим в программе Excelтаблицы нахождения точек пересечения линий с осями координат (Рисунок 1) и график (Рисунок 2).

Рисунок 1.


Рисунок 2.

Выделенная область, изображённая на рисунке, является областью допустимых значений функции F. Точка С - оптимальное решение. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:

x2 = 0, x1 = 60,

4x1 + x2 = 240, x2 = 0.

Максимальное значение линейной функции равно :

Fmax = 16*60 + 12*0 = 960.

Итак, Fmax= 960 при оптимальном решении х1 = 60, х2 = 0.

Ответ: Fmax= 960.


Заключение

В данной курсовой работе мною были освоены навыки решения задач линейного программирования геометрическим методом. Для этого я изучила теоретические сведения, необходимые для решения задач линейного программирования указанным методом. Я узнала, что данный метод применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно. Также я узнала, как строятся прямые на плоскости, для чего разобрала основные понятия линейной алгебры и выпуклого анализа. После чего, рассмотрела все этапы геометрического решения задач линейного программирования, благодаря чему я узнала, что бывают разные случаи при решении задач, а именно:

1) Основной случай, когда полученная область образует ограниченный выпуклый многоугольник;

2) Неосновной случай, когда полученная область образует неограниченный выпуклый многоугольник;

3) И также, возможен случай, когда неравенства противоречат друг другу, и допустимая область пуста, то есть данная задача не будет иметь решений.

В первых двух случаях задача может иметь единственное решение в конкретной точке, а также в любой точке отрезка или луча.

Таким образом, освоив все необходимые навыки использования геометрического метода для решения задач линейного программирования, я решила поставленные задачи.


Список литературы

1. Коротков М., Гаврилов М. «Основы линейного программирования», 2003 г..

2. Филькин Г.В., «Линейное программирование» (лекции), Шахты, 2007 г..

3. Воротницкий Ю.И. «Исследование операций».

4. Теха Х. «Введение в исследование операций», Издательский дом «Вильямс», 2001 г..

5. Давыдов Э.Г. «Исследование операций», 1990 г..

6. Дегтярев Ю.И. «Исследование операций», 1986 г..

7. Алабин Б.К. «Методы исследования операций» (курс лекций).

8. Лищенко «Линейное и нелинейное программирование», М. 2003 г..

9. А.Н. Карасев, Н.Ш. Кремер, Т.Н. Савельева «Математические методы в экономике», М. 2000 г..

10. Мину М. Математическое программирование. Теория и алгоритмы. М. 2004 г..