Смекни!
smekni.com

Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования (стр. 2 из 5)

Особенности исследования операций.

1. Системный подход к анализу поставленной проблемы.
Системный анализ является основным методологическим принципом исследования операций, который состоит в том, что любая задача, какой бы частной она не казалась, рассматривается сточки зрения ее влияния на критерий функционирования всей системы.

2. Для исследования операций характерно, что при решении каждой проблемы возникают все новые и новые задачи. Если сначала ставится узкие цели, применение операционных методов неэффективно. Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой.

3. Одной из существенных особенностей исследования операций является стремление найти оптимальное решение поставленной задачи. Однако часто такое решение оказывается недостижимым из-за ограничений, накладываемых имеющимися в наличии ресурсами или уровнем современной науки. Например, для комбинаторных задач, в частности задач календарного планирования при числе станков белее 4 оптимальное решение при современном уровне развития математики оказывается возможным найти лишь простым перебором вариантов. Однако даже при небольших n число возможных вариантов оказывается настолько велико, что перебор всех вариантов при существующих ограничениях на быстродействие ЭВМ и допустимое машинное время практически немыслимы,
тогда приходится ограничиваться поиском достаточно хорошего или субоптимального решения.

4. Особенность операционных исследований состоит и в том, что они проводятся комплексно, по многим направлениям. Для проведения такого исследования создается операционная группа. В ее состав входят специалисты различных областей: инженеры, математики, экономисты, социологи, психологи.

В исследовании операций главная роль отводится математическому моделированию. В настоящее время математические модели применяются для анализа, прогнозирования и выбора оптимальных решений в различных областях экономики. Это планирование и оперативное управление производством, управление трудовыми ресурсами, управление запасами, распределение ресурсов, планировка и размещение объектов, руководство проектом, распределение инвестиций и т.п. Модели разрабатываются с целью оптимизации заданной целевой функции при некоторой совокупности ограничений. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые представляют область допустимых значений управляющих переменных. Анализ модели должен привести к определению наилучшего управляющего воздействия на объект управления при выполнении всех установленных ограничений. В основе построения математических моделей лежит допущение о том, что все переменные, параметры и ограничения, а также целевая функция, количественно измеримы.

Кроме математических моделей в исследовании операций используются также имитационные и эвристические модели. Для построения имитационных моделей не требуется использование математических функций, явным образом связывающих те или иные переменные, и эти модели, как правило, позволяют имитировать поведение очень сложных систем, для которых построение математических моделей и получение решений невозможно. Эвристические методы базируются на интуитивно или эмпирически выбираемых правилах, которые позволяют исследователю улучшить уже имеющееся решение.

В литературе, посвященной вопросам экономико-математического моделирования, взависимости от учета различных факторов (времени, способов его представленияв моделях; случайных факторов и т.п.) выделяют, например, такие модели:

1. Детерминированый модель(линейная модель, нелинейная модель, динамическая модель, графическая модель);

2. Стохастический модель;

3. Неопределенный модель (теория игр, имитационные модели).

В стохастических моделях неизвестные факторы - это случайные величины, для которых известны функции распределения и различные статистические характеристики (математическое ожидание, дисперсия, среднеквадратическое отклонение и т.п.). Среди стохастических характеристик можно выделить:

*модели стохастического программирования, в которых либо в целевую функцию, либо в ограничения входят случайные величины;

*модели теории случайных процессов, предназначенные для изучения процессов, состояние которых в каждый момент времени является случайной величиной;

*модели теории массового обслуживания, в которой изучаются многоканальные системы, занятые обслуживанием требований.

Также к стохастическим моделям можно отнести модели теории полезности, поиска и принятия решений.

Для моделирования ситуаций, зависящих от факторов, для которых невозможно собрать статистические данные и значения которых не определены, используются модели с элементами неопределенности.

В моделях теории игр задача представляется в виде игры, в которой двое (или более) сторон преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнера. В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. К ним относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Во всех этих примерах конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера, и учитывать неизвестные заранее решения, которые эти партнеры будут принимать.

В имитационных моделях реальный процесс разворачивается в машинном времени, и прослеживаются результаты случайных воздействии на него, например, организация производственного процесса.

В детерминированных моделях неизвестные факторы не учитываются. Несмотря на кажущуюся простоту этих моделей, к ним сводятся многие практические задачи, в том числе большинство экономических задач. По виду целевой функции и ограничений детерминированные модели делятся на: линейные, нелинейные, динамические и графические.

Нелинейные модели - это модели, в которых либо целевая функция, либо какое-нибудь из ограничений (либо все ограничения) нелинейные по управляющим переменным. Для нелинейных моделей нет единого метода расчета. В зависимости от вида нелинейности, свойств функции и ограничений можно предложить различные способы решения. Однако может случится и так, что для поставленной нелинейной задачи вообще не существует метода расчета. В этом случае задачу следует упростить, либо сведя ее к известным линейным моделям, либо просто линеаризовав модель.

В динамических моделях учитывается фактор времени. Критерий оптимальности в динамических моделях может быть самого общего вида (и даже вообще не быть функцией), однако для него должны выполняться определенные свойства. Расчет динамических моделей сложен, и для каждой конкретной задачи необходимо разрабатывать специальный алгоритм решения. По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса.

Графические модели - используются тогда, когда задачу удобно представить в виде графической структуры.

В линейных моделях целевая функция и ограничения линейны по управляющим переменным. Построение и расчет линейных моделей являются наиболее развитым разделом математического моделирования, поэтому часто к ним стараются свести и другие задачи либо на этапе постановки, либо в процессе решения. К классическим задачам линейного программирования относятся задачи на составление оптимального плана перевозок (транспортная задача), задачи о загрузке оборудования, о смесях, о раскрое материалов, об ассортименте продукции, о размещении производства и управлении производственными запасами, задачи о питании, о рациональном использовании сырья и материалов и др. Для линейных моделей любого вида и достаточно большой размерности известны следующие стандартные методы решения:

1. Графический метод;

2. Симплекс-метод;

3. Двухэтапный метод. Он позволяет получить сначала стартовую точку, т.е. начальное допустимое решение, а затем оптимальное решение. В ограничения вводятся искусственные переменные необходимые для получения стартовой точки;

4. Метод больших штрафов;

По смыслу значительной части экономических задач, относящихся к задачам линейного программирования, компоненты решения должны выражаться в целых числах, т.е. быть целочисленными. Методы целочисленной оптимизации можно разделить на три основные группы: а) методы отсечения; б) комбинаторные методы; в) приближенные методы.

Метод Гомори. Сущность метода состоит в том, что сначала задача решается без условия целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:

- оно должно быть линейным;

- должно отсекать найденный оптимальный нецелочисленный план;

- не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением.

Далее задача решается с учетом нового ограничения. После этого в случае необходимости добавляется еще одно ограничение и т. д.

Метод ветвей и границ — один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов. Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.