2. Рассмотрим ограничение (3) прямой задачи:
.При введении искусственных переменных в целевую функцию вводятся коэффициенты штрафа М, поэтому для задачи максимизации получим:
.Т. о., при решении задачи максимизации ограничениям прямой задачи, имеющим знак равенства, соответствуют двойственные переменные, не ограниченные в знаке
.3. Рассмотрим ограничение (4) прямой задачи:
В целевой функции избыточные переменные имеют коэффициенты, равные нулю (
), а искусственные переменные коэффициенты, равные величине штрафа со своим знаком, в результате для задачи максимизации получим:Т. о., при решении задачи максимизации ограничениям прямой задачи, имеющим знак
, соответствуют неположительные двойственные переменные .4. Если в прямой задаче есть переменная, неограниченная в знаке, то в двойственной задаче получатся два ограничения, имеющие одинаковые коэффициенты при двойственных переменных, но разные знаки ограничений. Для удобства решения эти ограничения сворачивают в одно со знаком равенства (тем самым число ограничений двойственной задачи сводится к числу исходных переменных прямой задачи).
По аналогии можно записать условия двойственной задачи при решении задачи минимизации. Для удобства пользования некоторые соотношения при переходе от прямой задаче к двойственной приведены в таблице.
Прямая задача | Двойственная задача | |||
Целевая функция | Ограничения | Целевая функция | Ограничения | Переменные |
Максимизация | Минимизация | |||
= | ||||
Минимизация | Максимизация | |||
= | ||||
В двойственной задаче переменные могут быть неотрицательными (
), не ограниченными в знаке ( ), неположительными ( ). При решении ДЗ, как и ПЗ должны выполняться условия неотрицательности ограничений и переменных. Для представления двойственной задачи в стандартной форме используются следующие подстановки:если переменная
не ограничена в знаке, то ;если
, то .Такие подстановки следует использовать во всех ограничениях, содержащих эти переменные, а также в выражении для целевой функции.
После приведения ДЗ к стандартному виду используется симплекс - метод. Алгоритм получения решения тот же, что и для прямой задачи.
II. Практическая часть
1. Решение задачи линейного программирования графическим методом.
Дана следующая задача линейного программирования (ЗЛП).
,1.1. Все ограничения задачи
.1.2. Переменная
ограниченна в знаке, поэтому . Переменная не ограничена в знаке, поэтому вводим замену , где .Область допустимых решений будет ограничиваться I и IV квадрантом.
1.3. Построение ограничений и градиента целевой функции
:1.4. Область допустимых решений – отрезок AB.
1.5. Точка А – оптимальная. Координаты т. А:
; ; .2. Решение задачи линейного программирования симплекс-методом.
Прямая задача.
Задачу линейного программирования для любой вершины в компактной форме можно представить в виде:
Для получения используем алгоритм, приведённый в теоретической части.
1. Переход от неравенств к равенствам по правилам введения дополнительных переменных. Исходную задачу необходимо привести к стандартной форме: введем замену по переменной
, и дополнительные переменные: ,Полученный вид ЗЛП не позволяет сформировать начальный допустимый базис, т. к. нельзя выделить единичные орты во втором и третьем равенствах. Для получения начального допустимого базиса введём искусственные переменные. В результате получим:
,2. Общее число переменных определим по формуле:
=3+2+2=7, где - число искусственных переменных. Число базисных переменных определяется числом ограничений, т. к. , то система имеет три базисные переменные и небазисные переменные .