Смекни!
smekni.com

Расчет оптимизационных моделей (стр. 3 из 3)

Предположим, что в игре участвуют игроки А и В. Игрок имеет в своем распоряжении n стратегий, способов действий: A1, A2,…….An а игрок В располагает возможностью реализовать m стратегий: B1, B2,…….Bm. В зависимости от того, какую стратегию Аi (i=1,2,...,n) выберет игрок А и какую стратегию Вj(j=1, 2,……m) выберет игрок В, зависит исход игры каждого из них, то есть выигрыш aij одного из игроков и, соответственно, проигрыш другого. Таким образом, любой паре стратегий (Аi, Вj) соответствует определенное значение выигрыша aij. В итоге совокупность всех возможных выигрышей в данной игре образует матрицу, столбцы которой соответствуют стратегии одного игрока, а строки - стратегии другого. Такую матрицу называют платежной матрицей или матрицей игры.

Общий вид платежной матрицы, строки которой соответствуют стратегиям игрока А, а столбцы - стратегиям игрока В, изображен на рис. 3.2.

B1 B2 Bm
A1 a11 a21 a1m
A2 a21 a22 a2m
An an1 an2 anm

Рисунок 3.2. - Платежная матрица парной игры


При выборе своей стратегии Аi из набора n возможных стратегий A1, A2,…….An игрок А должен учитывать, что его соперник В выберет в ответ стратегию Вj из набора возможных стратегий, стремясь свести выигрыш игрока А к минимуму. Пусть наименьший из всех возможных выигрышей игрока А при выборе им стратегии Аi , то есть наименьшее значение aij в "i" строке платежной матрицы равно ai то есть aj = min aij. Наибольшее из значений aj(i=1,2,…n) обозначим а, следовательно а = max aj Такое максимальное значение из набора минимальных выигрышей игрока, соответствующих всему спектру применяемых им стратегий, называют нижней ценой или максимальным выигрышем из минимальных - максимином. Максимин представляет гарантированный выигрыш игрока А при любой стратегии игрока В, так как игрок А может выбрать ту стратегию, которая приносит ему максимальный выигрыш из минимально возможных.

Игрок В, стремясь уменьшить выигрыш игрока А и понимая, что А стремится к максимальному выигрышу, выбирая свою контрстратегию Вj анализирует прежде всего максимально возможные выигрыши игрока А. Пусть среди всех выигрышей игрока А при выборе игроком В стратегии Вj максимально возможное значение равно bj, то есть bj = max bij. Наименьшее из всех возможных значений bj(j=1,2,…n) обозначим Ь, то есть b= min bj Такое минимальное значение из набора максимальных выигрышей игрока, соответствующее всему спектру применяемых им стратегий, называют верхней ценой игры или минимальным выигрышем из максимальных -минимаксом. Минимакс представляет неизбежный проигрыш игрока В при любой из стратегий игрока А, ибо игрок А будет, естественно, стремиться максимизировать проигрыш игрока В и соответствующим образом выбирать свою стратегию.

Известный в теории игр принцип минимакса рекомендует игрокам выбирать из соображений осторожности, уменьшения риска максиминную стратегию при стремлении получить наибольший выигрыш или минимаксную при стремлении минимизировать проигрыш. Проиллюстрируем это положение на простых примерах.

Пример. Модель игры Человека с Природой

Во многих случаях результат деятельности людей зависит не только от выбора ими той или иной стратегии, но и от ситуаций, складывающихся во внешней среде. Классический случай - влияние погодных условий, природных явлений на итоги экономической деятельности. Люди как бы играют с Природой, которая создает разные ситуации, не благоприятствующие получению людьми лучших результатов. Какую ситуацию "выберет" Природа в своей игре с людьми - трудно предвидеть и потому приходится учитывать возможные ситуации.

Пусть Человек располагает возможностью осуществлять три стратегии действий Аi в целях получения прибыли, а Природа способна создать четыре вида ситуаций Вj, каждая из которых влияет тем или иным способом на величину прибыли. Составим платежную матрицу, в клетках которой зафиксированы рассчитанные определенными методами (которые в примере не рассматриваются) величины возможной прибыли. Например, матрица прибылей в тысячах гривен имеет вид:

B1 B2 B3 B4
A1 25 32 29 27
A2 29 36 28 32
A3 27 28 31 24

Применим максиминную стратегию, стремясь получить наибольшую прибыль. Выделим в каждой из строк матрицы минимальные значения прибыли, которые могут быть получены при осуществлении одной из возможных стратегий A1, A2, A3 и самых неблагоприятных условиях, создаваемых Природой. Это 25 тысяч гривен при стратегии A1, 28 тысяч гривен при стратегии A2 и 24 тысячи гривен при стратегии A3. Максимальное из этих значений - 28 тысяч гривен соответствует максиминной стратегии Аз, которую и следует выбрать, обеспечив тем самым гарантированное получение этой величины прибыли при любых условиях, ситуациях, создаваемых Природой.

Проиллюстрируем теперь минимаксную стратегию, используя платежную матрицу, в клетках которой указаны величины потерь, возникающих при осуществлении стратегий A1, A2, A3 в условиях B1, B2, B3, B4. Пусть матрица имеет вид.

B1 B2 B3 B4
A1 53 55 48 51
A2 49 52 50 56
A3 51 50 52 47

Выделяем в каждой из строк матрицы максимально возможные при осуществлении данной стратегии потери. Это - 55 при стратегии A1, 56 - при стратегии A2 и 52 - при стратегии A3. Минимальное из этих значений равно 52 и соответствует стратегии A3, которая и является минимаксной.

Сетевые модели

Специфическое свойство и основной признак этого вида моделей, используемых в планировании и управлении совокупностью взаимосвязанных действий, операций состоит в том, что они представлены в форме сетевых графиков выполнения работ, именуемых также сетевыми графами. Главными элементами, своего рода "строительными кирпичами" таких моделей являются работы и события. Под "работой" в сетевой модели имеются в виду любые действия, итог которых состоит в переводе управляемого объекта из одного состояния в другое. Событие же отражает результат работы, выполняемой на определенном этапе.

На рис.3.3. приведен упрощенный сетевой график работ по выпуску книги, в котором буквами обозначены работы, а цифрами события.


Рисунок 3.3. - Примерный сетевой график подготовки и выпуска новой книги

Исходное событие 1 - возникновение идеи, замысла у автора, за ним следует работа "а" - подготовка материалов, написание первого варианта рукописи, завершающиеся событием 2 - появлением первичной рукописи, с которой автор обращается в издательство.

Рукопись книги издательство передает на заключение рецензенту (работа "б") и готовит также собственное заключение (работа "в") с учетом передаваемого заключения рецензента (работа "г"). Так что событие 3 – это заключение рецензента, а событие 4 - итоговое заключение издательства. При положительном заключении готовиться договор с автором на издание книги (работа "д"), который в завершенном виде представляет событие 5. Затем рукопись передается редактору (работа "е"), который исправляет ее, доводя до более кондиционного состояния, характеризуемого как событие 6. Автор тоже работает над рукописью параллельно с редактором (работа "ж"), и после передачи редактором доработанной рукописи (работа "з") в издательстве наступает событие 7 - готовая к набору рукопись книги. Издательство передает рукопись в типографию (работа "и") в требуемом виде, что отражается в событии 8, а типография печатает книгу (работа "к"), в результате чего появляется готовая книга - завершающее событие - 9.

Сетевые графики служат эффективным средством увязывания работ и событий во времени, устанавливая период осуществления каждой работы и время наступления каждого события. Это способствует управлению ходом работ, их координации.