Смекни!
smekni.com

Применение методов линейного программирования для оптимизации стоимости перевозок (стр. 2 из 5)

или короче

где символ

означает сумму всех свободных неизвестных. Аналогично, исключив из первого вертикального уравнения базисные неизвестные
с помощью горизонтальных уравнений, мы получаем уравнение

Так как для закрытой модели транспортной задачи

, то полученные нами уравнения (3. ) и (3. ) одинаковы и, исключив из одного из них неизвестное
, мы получим уравнение-тождество 0=0, которое из системы вычеркивается.

Итак, преобразование системы (3. ) свелось к замене двух уравнений (первого горизонтального и первого вертикального) уравнением (3. ). Остальные уравнения остаются неизменными. Система приняла вид



В системе (3. ) выделен указанный выше базис: базисные неизвестные из первых т уравнений образуют первый столбец матрицы перевозок, а базисные неизвестные остальных уравнений образуют первую строку матрицы перевозок без первого неизвестного

[она входит в первое уравнение системы (3. )]. В системе (3. ) имеется
уравнений, выделенный базис содержит
неизвестных, а, следовательно, и ранг системы (3. )
.

Для решения транспортной задачи необходимо кроме запасов и потребностей знать также и тарифы

, т. е. стоимость перевозки единицы груза с базы
потребителю
.

Совокупность тарифов

также образует матрицу, которую можно объединить с матрицей перевозок и данными о запасах и потребностях в одну таблицу 3.:

Таблица 3. - Совокупность тарифов данные о запасах и потребностях

ПунктыОтправления Пункты назначения Запасы
Потребности
или

Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных

:

Требуется в области допустимых решений системы уравнений (3. ) и (3.) найти решение, минимизирующее линейную функцию (3. ).

Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен

то среди всех
неизвестных
выделяется
базисных неизвестных, а остальные
·
неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем
заполненных и
·
пустых клеток.

На предприятии ОАО «Электросигнал» имеется 4 транзитных склада Аi, на которых хранятся сборочные узлы и 5 цехов Bj, занимающихся сборкой готовой продукции. Ниже, в таблице 3., приведены данные по количеству сборочных узлов на каждом складе, запросы цехов и стоимость перевозки одного агрегата из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы цехов будут удовлетворены при минимальной суммарной стоимости перевозок.


Таблица 3. – Исходные данные по количеству сборочных узлов и стоимость перевозки

ЦехаСклад
B1(b1=40) B2(b2=50) B3(b3=15) B4(b4=75) B5(b5=40)
А1 1=50) 1,0 2,0 3,0 2,5 3,5
А22=20) 0,4 3,0 1,0 2,0 3,0
А33=75) 0,7 1,0 1,0 0,8 1,5
А44=80) 1,2 2,0 2,0 1,5 2,5

В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного цеха B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу 3. :