Смекни!
smekni.com

Основные этапы и цели моделирования (стр. 2 из 3)

Для начала определим, что это вообще берется за понятие системы. Исходя из поставленной задачи, под системой подразумевается автоматизированный конвейер обработки деталей в машинном цехе, воздействие на систему с внешней среды не осуществляется, а внутреннее производится непосредственно над деталями (первичная и вторичная обработка) и станками (уровень загрузки и производительности).

Далее определим входные и выходные элементы системы, для модели это будет входная и выходная информация. За входные элементы примем детали, а точнее количество этих деталей. За выходные – производительность станков на втором уровне обработки (я не принимаю уровень загрузки сборщика брака, т.к. это можно определить по производительности).

Так же можно сразу разбить систему на две подсистемы (это в дальнейшем упростит программную реализацию): систему первичной обработки деталей и систему вторичной обработки брака. Так как известно, что бракованные детали не могут обрабатываться дважды нет необходимости в дальнейшем дроблении.

Выбор вида моделей

Виды моделей можно классифицировать следующим способом:

детерминированное стохастическое

статическое динамическое

дискретное дискретно-непрерывное непрерывное

мысленное (абстрактное) реальное (материальное)

наглядное, символическое, математическое, натурное физическое

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на: детерминированные и стохастические; статические и динамические; дискретные, непрерывные и дискретно- непрерывные.

Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предвидится отсутствие всяких случайных влияний.

Стохастическое моделирование отображает вероятностные процессы и случаи. Анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, то есть набор однородных реализаций.

Статическое моделирование описывает поведение объекта в данный момент времени.

Динамическое моделирование отображает поведение объекта во времени.

Дискретное моделирование отображает дискретные процессы, непрерывное моделирование - непрерывные процессы, дискретно-непрерывное моделирование - оба процесса.

В зависимости от формы представления объекта (системы S) выделяют: вымышленные и реальные.

Вымышленное (абстрактное) моделирование - когда невозможно или дорогое материальное создание (модели микромира). Делится на:

- наглядное;

- символическое;

- материальное.

Наглядное моделирование - на базе представления человека об объекте создаются гипотетические модели, аналоги и макеты. Гипотетическое моделирование - выбирается гипотеза о реальном объекте, гипотеза, которая отображает уровень знаний об объекте, когда знаний не хватает для формализации. Аналоговое моделирование использует аналогии разных уровней (полная, неполная, приблизительная). Макетирование - в основе выполненного макета лежит аналогия причинно-наследственных связей.

Символическое моделирование - искусственный процесс создания логического объекта-заместителя реального с помощью системы знаков и символов. Знаковое моделирование - вводятся знаки, условные обозначения отдельных понятий, составляются из знаков слова и предложения; операции объединения, пересечения и дополнения теории множеств дают описание объекта.

Языковое моделирование - в основе лежит словарь однозначных понятий.

Математическое моделирование - замена реального объекта математическим. Делится на аналитическое, имитационное и комбинированное.

Аналитическое моделирование - процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

- аналитическими, когда хотят получить в общем виде явные зависимости для искомых характеристик;

- численным, когда, не умея решить уравнение в общем виде, получают числовые результаты при конкретных исходных данных;

- качественный, когда не умея решить уравнение, находят некоторые свойства решений (например, стойкость и др.).

Аналитический метод связывает явной зависимостью исходные данные с искомыми результатами. Это возможно для сравнительно простых систем.

Численные методы позволяют исследовать более широкий класс систем. Они эффективны при использовании ЭВМ. Для построения аналитических моделей существует мощный математический аппарат - алгебра, функциональный анализ, разностные уравнения, теория вероятности, математическая статистика, теория массового обслуживания и т.д.

Имитационное моделирование используется, когда для описания СС недостаточно аналитического моделирования. В имитационной модели поведение компонент сложной системы (СС) описывается набором алгоритмов, которые затем реализуют ситуации, которые возникают в реальной системе. Алгоритмы, которые модулируют по исходным данным (сходное состояние СС) и фактическим значением параметров СС позволяют отобразить явления в S и получить информацию о возможном поведении СС. На основе этой информации исследователь может принять соответствующее решение. Имитационная модель (ИМ) СС рекомендуется в следующих случаях :

1) нет законченной постановки задачи исследования и идет процесс познания объекта моделирования. ИМ - способ изучения явления.

2) математические средства аналитического моделирования сложные и громоздкие и ИМ дает наиболее простой способ.

3) кроме оценки влияния параметров СС необходимо наблюдать поведение компонент СС некоторый период.

4) ИМ - единственный способ исследования СС, то есть невозможны наблюдения в реальных условиях за объектом.

5) необходимо контролировать протекание процессов в СС, уменьшая и ускоряя скорость их протекания в ходе имитации.

6) при подготовке специалистов и освоении новой техники.

7) изучение новых ситуаций в СС, проверка новых стратегий и принятие решений перед проведением экспериментов на реальной S.

8) предвиденье узких мест и трудностей в поведении СС при введении новых компонент.

ИМ - наиболее распространенный метод анализа и синтеза СС.

Натурное моделирование - исследование на реальном объекте и обработке результатов экспериментов на основе теории подобия. Научный эксперимент, комплексные исследования, производственный эксперимент (исследуется широкая автоматизация, вмешательство в управление реальным процессом, создание критических ситуаций).

Физическое моделирование - на установках, которые сохраняют природу явлений при физическом подобии.

Кибернетическое моделирование - нет непосредственно физического подобия. Отображается S как "черный ящик" рядом входов и выходов.

Из всего вышесказанного и условий задания можно определить следующий вид модели:

- В зависимости изучаемых процессов: стохастическая – неизвестно сколько будет находиться деталей в накопителе при повторной обработке (известно, что если больше 3-х – активизируется второй станок); динамическое – необходимо узнать как система будет функционировать не в конкретный момент времени а на всем промежутки обработки 500-а деталей; непрерывное – из задания следует, что рассматривается автоматизированный конвейер.

- В зависимости от формы представления: вымышленное (абстрактное) – слишком дорого для студента материальное создание; к данной моделе применимы почти все варианты абстрактного моделирования (математическое, символьное т.д.) так, что нет смысла перечислять все.

Выбор математической схемы

Математическая схема - это участок при переходе от содержательного к формальному описанию процесса функционирования системы с учетом действия внешней среды.

То есть имеет место связка: "описательная модель - математическая схема - математическая (аналитическая и (или) имитационная) модель".

Каждая конкретная система S характеризуется набором свойств, то есть величин, отображающих поведение моделируемого объекта (реальной S) и учитывающих условия ее функционирования во взаимодействии с внешней средой (системой) Е.

При построении ММ системы решаются вопросы о полноте и упрощении. Полнота модели реализуется выбором границы " система S - среда Е ". Упрощение модели - выделение основных свойств S и отбрасывание второстепенных свойств (зависит от цели моделирования).

МАТЕМАТИЧЕСКИЕ СХЕМЫ ОБЩЕГО ВИДА

Модель S можно представить множеством величин, описывающих процесс функционирования реальной системы S.

Эти величины создают в общем случае четыре подмножества :

1) совокупность входных влияний на систему

;;