Смекни!
smekni.com

Оптимальный план загрузки оборудования и транспортных связей (стр. 3 из 3)

Таким образом, уравнение регрессии получается:

Используя уравнение регрессии, дополним последний столбец расчетной таблицей. Измерим частоту связи в парной корреляции с помощью коэффициента корреляции:

Вывод: коэффициент корреляции r равен - 0,02, что говорит о наличии прямой слабой связи между затратами на единицу продукции и балансовой прибыли предприятия.

Рассчитаем t-критерий Стьюдента:

гипотеза о наличии прямой слабой связи между показателями не отвергается.

Прогнозирование сезонных явлений.

Построить прогнозную модель сезонного явления. Рассчитать показатели сезонности, используя скользящую среднюю и уравнение тренда. Рассчитать поквартальные индексы сезонности. Описать модели прогноза.

Год Квартал Фактическое значение Расчет с помощью экспоненциального сглаживания Расчет по уравнению тренда
Расчетный уровень ряда Показатели сезонности Расчетный уровень ряда Показатели сезонности
1996 I 715 -54987,9 -0,01300287
II 2145 715 3 -169116 -0,01268359
III 2955 1716 1,72203 -233762 -0,01264105
IV 3822 2583,3 1,4795 -302958 -0,01261563
1997 I 594 3450,39 0,17215 -45330,8 -0,01310366
II 2112 1450,917 1,45563 -166482 -0,01268602
III 2156 1913,675 1,12663 -169994 -0,0126828
IV 962 2083,303 0,46177 -74700,9 -0,01287802
1998 I 126 1298,391 0,09704 -7979,76 -0,01578995
II 415 477,7172 0,86871 -31044,9 -0,01336776
III 821 433,8152 1,89251 -63447,7 -0,01293979
IV 1557 704,8446 2, 209 -122188 -0,01274267
1999 I 198 1301,353 0,15215 -13726,1 -0,01442509
II 318 529,006 0,60113 -23303,3 -0,01364615
III 1218 381,3018 3, 19432 -95132,3 -0,01280323
IV 2415 966,9905 2,49744 -190665 -0,0126662
2000 I 388 1980,597 0, 1959 -28890 -0,01343026
II 242 865,7791 0,27952 -17237,7 -0,01403898
III 636 429,1337 1,48206 -48682,9 -0,01306415
IV 970 573,9401 1,69007 -75339,4 -0,01287507

1,2) На основании исходных данных строим в MSExcel график с добавлением на него линии тренда. При построении тренда необходимо, чтобы на нем отобразилось уравнение тренда.

Графа 4 рассчитывается: при помощи поката анализа MSExcel с использованием функции экспоненциальное сглаживание.

Графа 5 рассчитывается: делением графы 3 на графу 4.

Графа 6 рассчитывается: подстановкой в уравнение линейного тренда, полученного при помощи MSExcel, соответствующих значений периода (от 1 до 20 по диаграмме).

Графа 7 рассчитывается: делением графы 3 на графу 6.

3) определяем индексы сезонности по кварталам, которые вычисляются по формуле:

n- количество лет.


Индексы сезонности товарооборота

Квартал Индекс сезонности
С помощью экспоненциального сглаживания С помощью уравнения тренда
I 0,15431187 -0,013950368
II 1,24099806 -0,0132845
III 1,88350851 -0,012826201
IV 1,66755568 -0,012755519

4) Описание модели прогноза для каждого квартала:

5) Расчет среднеквадратичного отклонения осуществляется с помощью следующей таблицы:

Годы I II III IV
факт расчет откл факт расчет откл факт расчет откл факт расчет откл
1999 715 1996,49 -1281,49 2145 1916,68 228,32 2955 1836,87 1118,13 3822 1757,06 2064,94
2000 594 1677,25 -1083,25 2112 1597,44 514,56 2156 1517,63 638,37 962 1437,82 -475,82
2001 126 1358,01 -1232,01 415 1278, 20 -863, 20 812 1198,39 -386,39 1557 1118,58 438,42
2002 198 1038,77 -840,77 318 958,96 -640,96 1218 4496,95 -3278,95 2415 799,34 1615,66
2003 318 719,53 -401,53 242 639,72 -397,72 636 559,91 76,09 970 3847,80 -2877,80

При заполнении таблицы используются фактические данные и расчетные, полученные при помощи уравнения тренда.

6) Расчет случайной величины:

где

= 2, n =5 (количество периодов, лет)

7) Построение прогноза на 2001 год

I II III IV
нижняя 1466,05 1106,17 2192,77 1901,45
прогноз 34,95 55,98 96,48 143,93
верхняя -1396,14 -994, 20 -1999,81 -1613,60

Прогнозное значение получается путем подстановки соответствующих периодов (21, 22, 23, 24) в уравнение прогноза каждого квартала (пункт 4).

Верхняя граница получается путем подстановки в уравнение модели прогноза каждого квартала соответствующей случайной величины с положительным знаком.

Нижняя граница получается путем подстановки в уравнение модели прогноза каждого квартала соответствующей случайной величины с отрицательным знаком.