Таким образом, уравнение регрессии получается:
Используя уравнение регрессии, дополним последний столбец расчетной таблицей. Измерим частоту связи в парной корреляции с помощью коэффициента корреляции:
Вывод: коэффициент корреляции r равен - 0,02, что говорит о наличии прямой слабой связи между затратами на единицу продукции и балансовой прибыли предприятия.
Рассчитаем t-критерий Стьюдента:
гипотеза о наличии прямой слабой связи между показателями не отвергается.
Прогнозирование сезонных явлений.
Построить прогнозную модель сезонного явления. Рассчитать показатели сезонности, используя скользящую среднюю и уравнение тренда. Рассчитать поквартальные индексы сезонности. Описать модели прогноза.
Год | Квартал | Фактическое значение | Расчет с помощью экспоненциального сглаживания | Расчет по уравнению тренда | ||
Расчетный уровень ряда | Показатели сезонности | Расчетный уровень ряда | Показатели сезонности | |||
1996 | I | 715 | -54987,9 | -0,01300287 | ||
II | 2145 | 715 | 3 | -169116 | -0,01268359 | |
III | 2955 | 1716 | 1,72203 | -233762 | -0,01264105 | |
IV | 3822 | 2583,3 | 1,4795 | -302958 | -0,01261563 | |
1997 | I | 594 | 3450,39 | 0,17215 | -45330,8 | -0,01310366 |
II | 2112 | 1450,917 | 1,45563 | -166482 | -0,01268602 | |
III | 2156 | 1913,675 | 1,12663 | -169994 | -0,0126828 | |
IV | 962 | 2083,303 | 0,46177 | -74700,9 | -0,01287802 | |
1998 | I | 126 | 1298,391 | 0,09704 | -7979,76 | -0,01578995 |
II | 415 | 477,7172 | 0,86871 | -31044,9 | -0,01336776 | |
III | 821 | 433,8152 | 1,89251 | -63447,7 | -0,01293979 | |
IV | 1557 | 704,8446 | 2, 209 | -122188 | -0,01274267 | |
1999 | I | 198 | 1301,353 | 0,15215 | -13726,1 | -0,01442509 |
II | 318 | 529,006 | 0,60113 | -23303,3 | -0,01364615 | |
III | 1218 | 381,3018 | 3, 19432 | -95132,3 | -0,01280323 | |
IV | 2415 | 966,9905 | 2,49744 | -190665 | -0,0126662 | |
2000 | I | 388 | 1980,597 | 0, 1959 | -28890 | -0,01343026 |
II | 242 | 865,7791 | 0,27952 | -17237,7 | -0,01403898 | |
III | 636 | 429,1337 | 1,48206 | -48682,9 | -0,01306415 | |
IV | 970 | 573,9401 | 1,69007 | -75339,4 | -0,01287507 |
1,2) На основании исходных данных строим в MSExcel график с добавлением на него линии тренда. При построении тренда необходимо, чтобы на нем отобразилось уравнение тренда.
Графа 4 рассчитывается: при помощи поката анализа MSExcel с использованием функции экспоненциальное сглаживание.
Графа 5 рассчитывается: делением графы 3 на графу 4.
Графа 6 рассчитывается: подстановкой в уравнение линейного тренда, полученного при помощи MSExcel, соответствующих значений периода (от 1 до 20 по диаграмме).
Графа 7 рассчитывается: делением графы 3 на графу 6.
3) определяем индексы сезонности по кварталам, которые вычисляются по формуле:
n- количество лет.
Индексы сезонности товарооборота
Квартал | Индекс сезонности | ||
С помощью экспоненциального сглаживания | С помощью уравнения тренда | ||
I | 0,15431187 | -0,013950368 | |
II | 1,24099806 | -0,0132845 | |
III | 1,88350851 | -0,012826201 | |
IV | 1,66755568 | -0,012755519 |
4) Описание модели прогноза для каждого квартала:
5) Расчет среднеквадратичного отклонения осуществляется с помощью следующей таблицы:
Годы | I | II | III | IV | ||||||||
факт | расчет | откл | факт | расчет | откл | факт | расчет | откл | факт | расчет | откл | |
1999 | 715 | 1996,49 | -1281,49 | 2145 | 1916,68 | 228,32 | 2955 | 1836,87 | 1118,13 | 3822 | 1757,06 | 2064,94 |
2000 | 594 | 1677,25 | -1083,25 | 2112 | 1597,44 | 514,56 | 2156 | 1517,63 | 638,37 | 962 | 1437,82 | -475,82 |
2001 | 126 | 1358,01 | -1232,01 | 415 | 1278, 20 | -863, 20 | 812 | 1198,39 | -386,39 | 1557 | 1118,58 | 438,42 |
2002 | 198 | 1038,77 | -840,77 | 318 | 958,96 | -640,96 | 1218 | 4496,95 | -3278,95 | 2415 | 799,34 | 1615,66 |
2003 | 318 | 719,53 | -401,53 | 242 | 639,72 | -397,72 | 636 | 559,91 | 76,09 | 970 | 3847,80 | -2877,80 |
При заполнении таблицы используются фактические данные и расчетные, полученные при помощи уравнения тренда.
6) Расчет случайной величины:
где
= 2, n =5 (количество периодов, лет)7) Построение прогноза на 2001 год
I | II | III | IV | |
нижняя | 1466,05 | 1106,17 | 2192,77 | 1901,45 |
прогноз | 34,95 | 55,98 | 96,48 | 143,93 |
верхняя | -1396,14 | -994, 20 | -1999,81 | -1613,60 |
Прогнозное значение получается путем подстановки соответствующих периодов (21, 22, 23, 24) в уравнение прогноза каждого квартала (пункт 4).
Верхняя граница получается путем подстановки в уравнение модели прогноза каждого квартала соответствующей случайной величины с положительным знаком.
Нижняя граница получается путем подстановки в уравнение модели прогноза каждого квартала соответствующей случайной величины с отрицательным знаком.