Министерство образования и науки Украины
Донбасская государственная машиностроительная академия
Контрольная работа
по дисциплине: «Эконометрика»
Выполнил:
студент гр. ПВ 09-1з
Измайлов А.О.
Проверила:
Гетьман И.
Краматорск 2010
1. Теоретический вопрос
Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии.
Область прогнозов находится так: среди выборочных х находят xmin и xmax. Отрезок прямой, заключенный между ними называется областью прогнозов.
|
Прогнозируемый доверительный интервал для любого х такой
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке
|
Прогноз для произвольного х дает интервал, в который с вероятностью g попадает неизвестное
Максимальная ошибка прогноза.
Выборочные значения yi равны
Для неизвестных коэффициентов
Геометрический смысл коэффициента
Истинная прямая регрессии может с вероятностью g занимать любое положение в доверительной области.
Наиболее максимальное отклонение от расчетного значения -
Т.е. максимальная ошибка прогноза в процентах составляет:
Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
Точка прогноза
|
Рис. 1
Т.е. область прогноза определяется системой неравенств:
Чтобы получить формулу для вычисления полуширины d доверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1
№ набл | Y | X1 | X2 | … | Xp |
1 | y1 | x11 | x12 | x1p | |
2 | y2 | x21 | x22 | x2p | |
… | |||||
n | yn | xn1 | xn2 | xnp |
Подставляя в уравнение (2) значения из каждой строки таблицы, получим n уравнений.
ei – случайные отклонения (остатки), наличие которых объясняется тем, что выборочные точки не ложатся в точности на плоскость (1), а случайным образом разбросаны вокруг нее.
Чтобы записать систему (2) в матричном виде, вводим матрицу X, составленную из множителей при коэффициентах b1, b2, …, bp.
Матрица
Еще вводятся матрицы:
Вектор столбец
Тогда в матричной форме уравнение регрессии записывается так:
Полуширина доверительного интервала рассчитывается по формуле:
где
вектор
2. Задача
Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.
X=1
1. Найдем производную функции
2. Найдем эластичность.
3. Коэффициент эластичности для точки прогноза:
X=1
Коэффициент эластичности показывает, что при изменении фактора X =1 на 1% показатель Y уменьшится на 0,5%.
3. Задача
Для представленных данных выполнить следующее задание:
1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.
Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными: