Министерство образования и науки Украины
Донбасская государственная машиностроительная академия
Контрольная работа
по дисциплине: «Эконометрика»
Выполнил:
студент гр. ПВ 09-1з
Измайлов А.О.
Проверила:
Гетьман И.
Краматорск 2010
1. Теоретический вопрос
Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии.
Область прогнозов находится так: среди выборочных х находят xmin и xmax. Отрезок прямой, заключенный между ними называется областью прогнозов.
Прогнозируемый доверительный интервал для любого х такой
.Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке
.Прогноз для произвольного х дает интервал, в который с вероятностью g попадает неизвестное
. Т.е. прогноз при заданном х составит от до с гарантией .Максимальная ошибка прогноза.
Выборочные значения yi равны
, где коэффициенты регрессии для всей генеральной совокупности, - случайная величина, значение которой мы определить не можем, так как не знаем .Для неизвестных коэффициентов
могут быть найдены доверительные интервалы, в которые с надежностью g попадают : , .Геометрический смысл коэффициента
- ордината пересечения прямой регрессии с осью 0Y, коэффициента - угловой коэффициент прямой регрессии. Вследствие этого возникает следующая ситуация:Истинная прямая регрессии может с вероятностью g занимать любое положение в доверительной области.
Наиболее максимальное отклонение от расчетного значения -
или . Найдем ошибку прогноза для каждого из значений: , .Т.е. максимальная ошибка прогноза в процентах составляет:
, т.е. чем больше полуширина доверительного интервала, тем больше ошибка. Ширина доверительного интервала возрастает с ростом коэффициента доверия и уменьшается с ростом объема выборки со скоростью . Т.е. увеличив объем выборки в 4 раза, в 2 раза сузим доверительный интервал, т.е. в 2 раза уменьшим ошибку прогноза. С уменьшением коэффициента доверия уменьшается ошибка прогноза, но растет вероятность того, что истинное значение не попадет в доверительный интервал.Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
(1)Точка прогноза
из p-мерного пространства с координатами выбирается из области прогноза. Если, например, модель двухфакторная , то область прогноза определяется прямоугольником, представленным на рис. 1.Рис. 1
Т.е. область прогноза определяется системой неравенств:
Чтобы получить формулу для вычисления полуширины d доверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1
№ набл | Y | X1 | X2 | … | Xp |
1 | y1 | x11 | x12 | x1p | |
2 | y2 | x21 | x22 | x2p | |
… | |||||
n | yn | xn1 | xn2 | xnp |
Подставляя в уравнение (2) значения из каждой строки таблицы, получим n уравнений.
(2)ei – случайные отклонения (остатки), наличие которых объясняется тем, что выборочные точки не ложатся в точности на плоскость (1), а случайным образом разбросаны вокруг нее.
Чтобы записать систему (2) в матричном виде, вводим матрицу X, составленную из множителей при коэффициентах b1, b2, …, bp.
Матрица
. Размерность матрицы n´p+1.Еще вводятся матрицы:
Вектор столбец
, , , размерностью n´1.Тогда в матричной форме уравнение регрессии записывается так:
.Полуширина доверительного интервала рассчитывается по формуле:
,где
- среднее квадратическое отклонение остатков; - критическая точка распределения Стьюдента, соответствующая уровню доверия g=(0.95, 0.99, 0.999) и степени свободы k=n-p-1.вектор
точка из области прогноза.2. Задача
Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.
X=1
1. Найдем производную функции
,2. Найдем эластичность.
, тогда3. Коэффициент эластичности для точки прогноза:
X=1
Коэффициент эластичности показывает, что при изменении фактора X =1 на 1% показатель Y уменьшится на 0,5%.
3. Задача
Для представленных данных выполнить следующее задание:
1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.
Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными: