Смекни!
smekni.com

Некоторые задачи оптимизации в экономике (стр. 8 из 12)

Тогда L=

+2∙2
=5
.

Ответ: Минимум достигается в точке О(0;0), глобальный максимум, равный 5

, в точке А(
;2
) .

2. Найти экстремумы функции L=(x1-6)2+(x2-2)2 при ограничениях

x1+x2≤8

3 x1+x2≤15

x1+x2≥1

.

Решение. ОДР – многоугольник ABCDE. Линии уровня представляют собой окружности (x1-6)2+(x2-2)2 с центром в точке О1(6;2). Возьмём, например, С=36, видим, что максимум достигается в точке А(0;4), которая лежит на окружности наибольшего радиуса, пересекающую ОДР. L(A)=(0-6)2+(4-2)2=40. Минимум - в точке F, находящейся на пересечении прямой 3x1+x2=15 и перпендикуляра к этой прямой, проведённого из точки О1. Т.к. угловой коэффициент равен -3, то угловой коэффициент перпендикуляра равен
. Из уравнения прямой, проходящей через данную точку О1 с угловым коэффициентом
, получим (x2-2)=
(x1-6). Найдём координаты точки Е

х1-3х2=0

3 x1+x2=15.

Решив систему, получаем Е(4.5; 1.5).

L (E) = (4.5-6)2+ (1.5-2)2=2.5.

Ответ: Минимум, равный 2.5 достигается в точке (4.5; 1.5), максимум, равный 40, в точке (0;4).

3. Найти экстремумы функции L=(x1-1)2+(x2-3)2

при ограничениях

,
.

Решение: ОДР является часть круга, с центром в начале координат, с радиусом 5, расположенная в I четверти. Линии уровня – это окружности с центром в точке О1 и радиуса С, т.к. (x1-1)2+(x2-3)2. Точка О1 – это вырожденная линия уровня, соответствующая минимальному значению С=0. глобальный максимум достигается в точке А, лежащей на пересечении ОДР с линией уровня наибольшего радиуса. При этом

L(A)=(5-1)2+(0-3)2=25.

Ответ: Минимум, равный 0, достигается в точке (1;3),

Максимум, равный 25, - в точке А(5;0).

4. Предприниматель решил выделить на расширение своего дела 150 тыс.руб. известно, что если на приобретение нового оборудования затратить х тыс. руб., а на зарплату вновь принятых работников у тыс. руб., то прирост объёма продукции составит Q=0.001x0.6·y0.4 . Как следует распределить выделенные денежные ресурсы, чтобы прирост объёма продукции был максимальным.

Решение: Целевая функция имеет вид 0.001x0.6·y0.4max при ограничениях x+y≤150,

.

ОДР – треугольник.

Линии уровня будут иметь вид 0.001x0.6·y0.4. Выразив отсюда у, получим у=
. Т.к. максимум достигается в точке касания линии уровня с ОДР, то условие касания имеет вид
=-1. Найдя производную, получаем
=-1. Выразив х, получим х=
. у=
=
.

Ответ: Факторы х и у следует распределить в отношении 2:3.

5.Предприятие выпускает изделия А и Б, при изготовлении которых используется сырьё S1 и S2. Известны запасы bi (i=1,2) сырья, нормы его расхода на единицу изделия aij (j=1,2), оптовые цены pj на изделия и их плановая себестоимость с

. Как только объём выпускаемой продукции перестаёт соответствовать оптимальному размеру предприятия, дальнейшее увеличение выпуска хj ведёт к повышению себестоимости продукции b, в первом приближении фактическая себестоимость сj описывается функцией сj= с
+ с
х
j, где сj – некоторая постоянная. Все числовые данные приведены в таблице

b1 b2 a11 a12 a21 a22 p1 p2 с
с
с
с
90 88 13 6 8 11 12 10 7 8 0.2 0.2

Найти план выпуска изделий, обеспечивающий предприятию наивысшую прибыль в условиях нарушения баланса между объёмом и оптимальным размером предприятия.

Решение: Составим математическую модель задачи.

Пусть Z – прибыль, получаемая предприятием после реализации х1 выпущенных изделий А и х2 изделий Б.

Z=( 12-( 7+ 0,2 х1)) х1+( 10-( 8+ 0,2 х2)) х2max,

при ограничениях 13 х1+ 6 х2≤ 90,

8 х1+ 11 х2≤88,

Преобразуя целевую функцию, получим:

Z=5х1-0,2х

+2 х2-0,2х
max

ОДР – многоугольник ОАВD. Для построения линий уровня функции, приведём функцию к следующему виду:

1-12,5)2+(х2-5)2=181,25-5Z .

Линиями уровня будут окружности с центром в точке О1(12,5; 5) и радиуса

. Окружность наибольшего радиуса будет проходить через точку М, находящейся на пересечении прямой ВD и прямой O1М, перпендикулярной к BD. Найдём координаты точки М.

13х1+ 6х2=90

х2-5=6/13(х1-12,5). Решив систему, получим, М(6;2).

Z(М)=30-7,2-2,8+4=26.

Ответ: Для получения предприятием максимальной прибыли, составляющей 26 ден.ед., следует выпустить 6 ед. изделия А и 2 ед. изделия Б.

5) Задача на условный экстремум.

Если система ограничений (3.1) задана в виде равенств, то это задача на условный экстремум. В случае функцииn независимых переменных (x1,x2, …,хn) задача на условный экстремум формулируется следующим образом:

L=f(x1,x2, …,хn )→max (min)

при условиях: gi(x1,x2, …,хn)=0, i=

.(m<n).

В конце XVIIIвека Лагранж предложил остроумный метод решения задачи на условный экстремум. Суть метода Лагранжа состоит в построении функции L(x1,x2, …,хn)= f(x1,x2, …,хn)+

gi(x1,x2, …,хn), где λiнеизвестные постоянные, и нахождении экстремума функции L.