Целесообразно ввести в рассмотрение переменную x(t) = K(t) — А, имеющую смысл отклонения величины капитала от некоего характерного постоянного значения А. В такой ситуации уравнение (10) примет следующую форму:
= dτ (11)Отдифференцировав (11) по независимой переменной t и выполнив необходимые тождественные преобразования, получим искомое обыкновенное дифференциальное уравнение второго порядка по переменной X(t):
(12)где
ρ(t) =
q(t)=βξ(t)η(t)
с ненулевыми начальными условиями;
X(0)=K0 – A,
(13)Дифференциальное уравнение (12) занимает особое место в общей теории обыкновенных дифференциальных уравнений, и совершенно невозможно дать исчерпывающий обзор свойств решения этого уравнения.
По поводу дифференциального уравнения (12) известный американский математик Р. Беллман утверждал, что значение уравнений указанного вида в физике трудно переоценить. Существует много исследований, связанных с данным уравнением. С математической точки зрения оно представляет собой постоянный вызов искусству аналитика: надо получать всевозможные свойства решений этого уравнения, не пользуясь такой роскошью, как явное представление последних через коэффициенты р и q.
Из-за многообразия возможных случаев и вытекающей отсюда трудности объединения их в общей теории мы ограничимся рассмотрением некоторых частных примеров, которые, кроме того что представляют экономико-математический интерес, иллюстрируют применение разработанных основных методов к исследованию задач экономической динамики.
2. Пример 1
При реализации планируемых инвестиционных проектов (формула (5)) с учетом распределенных запаздываний (взаимосвязь капитала, решений об инвестициях и фактических капиталовложений) используется функция φ1(t,τ)=be(τ-t), где b>0 есть некоторая постоянная времени. С экономической точки зрения такой выбор ядра интегрального преобразования (5) означает, что весовой коэффициент решения об инвестировании в момент времени τ(0<τ<t) возрастает с приближением к моменту времени t (когда инвестиции реализуются) и убывает, когда величина τ находится ближе к нулю.
Данный подход отражает реальное поведение инвесторов, когда принимаются решения об инвестировании.
Поскольку
φ1(t,τ)= ξ1(t)η1(τ),
то для определенности выберем
ξ1(t)= е-ы
η1(τ)= bеы.
Далее, после элементарных преобразований выражение (12) трансформируется к виду дифференциального уравнения второго порядка с постоянными коэффициентами:
(14)Коэффициенты уравнения (14) есть строго положительные числа, так как 0 < α < 1, следовательно, решения X(t) будут устойчивыми.
Структура решений (14) имеет следующий вид:
X(t) =
(15)где
λ1,2=
R1, R2 — произвольные постоянные, зависящие от начальных условий.
Таким образом, все решения X(t) дифференциального уравнения (14) экспоненциально стремятся от заданного начального условия Х0 к равновесному значению Х=0 (К=А). При этом характер движения X(t) к равновесию при условии b =
является монотонным, а при противоположном знаке неравенства - колебательным гармоническим с частотойω =
.Здесь уместно напомнить, что разностное ядро φ1(t,τ)=beb(τ-t) —так называемая "память о принятых инвестиционных решениях", по сути, является динамическим регулятором инвестиционного процесса, и вполне правомерна постановка задачи о выборе оптимального значения параметра b в соответствии с требованиями к качеству переходного процесса накопления капитала.
Установленная зависимость реализованных инвестиционных (в динамике) решений играет существенную роль для моделирования последствий поведения инвестора, что не всегда учитывается в инвестиционном процессе на макроуровне.
Пример 2
Рассмотрим ситуацию, когда реализуются инвестиционные проекты с учетом равной значимости на временном интервале τ
[0, t] всех инвестиционных решений, что наиболее часто моделируется в ходе принятия стратегических решений. В таком случае ядро примет видφ2(t,τ)= 1/t,
то есть
ξ2(t,r) = 1/t,η2(τ)=1.
После необходимых преобразований дифференциальное уравнение (12) примет форму обыкновенного дифференциального уравнения второго порядка с переменными параметрами
(16)Поведенческие свойства дифференциального уравнения (16) принципиально отличаются от свойств (14), так как имеют переменные коэффициенты, обращающиеся в бесконечность в нуле. Для уравнений типа (16) используются асимптотические методы, описывающие решения, когда параметры, от которых они зависят, стремятся к бесконечности.
В данном случае для уравнения (16) имеется решение:
X(t)=
(17)Здесь цилиндрическая функция
(t) есть линейная комбинация специальных функций Бесселя первого Ja(t) и второго Ya(t) родов; С1, С2 — произвольные постоянные, зависящие от начальных условий. Для функций Бесселя существуют асимптотические представления при больших значениях аргумента t »1. Тогда решение (17) можно приближенно выразить через элементарные функции:X(t)≈
(18)Вполне очевидно, что в выражении (18) имеют место колебания с переменной амплитудой и частотой. Представляет интерес частный случай решения (18) при α =1/2:
X(t)=
= + (19)Как видим, решение Х(t) в (19) является ограниченным, но колеблющимся с неограниченно возрастающим периодом, что само по себе есть факт, далекий от тривиальности при исследовании в динамике капитала низкочастотных (медленных) колебаний с позиций теорий экономических циклов.
Проанализировав два примера из первоначального варианта модели, предложенного М. Калецким еще в докейнсианский период, здесь мы не намерены рассматривать ее более поздние версии ввиду общности полученных ранее результатов. Кроме того, приведенные примеры наглядно демонстрируют принципиальное отличие динамических режимов накопления капитала при разных способах учета предварительных инвестиционных решений в момент их реализации. Данный модельный ряд динамики капитала инициирует соответствующие экономические интерпретации, адаптированные к реальным инвестиционным проектам, что существенно при решении задач макроэкономического анализа и формирования экономических систем кластерного типа.
Главной является мысль М. Калецкого о том, что макроэкономические процессы, описываемые с помощью мультипликатора-акселератора, имеют еще одну степень свободы, основанную на различии между инвестиционными решениями и фактическими капиталовложениями.
Выводы
На предложенных вариантах модификации модели было показано, что способ реализации инвестиционных проектов может как оказывать стабилизирующее влияние в целом на динамику капитала, так и вызывать негативные эффекты, нарушающие устойчивое функционирование экономической системы и провоцирующие нежелательные колебательные процессы.
Для улучшения инвестиционного климата в стране требуются научно обоснованные стратегии роста капиталовооруженности украинских предприятий, чтобы для самих инвесторов их инициативная деятельность в дальнейшем не принимала мистический характер "ритуальных жертвоприношений". Вот почему крайне важно в настоящее время для стимулирования экономического прогресса и повышения занятости расширять совокупный спрос путем инвестиций. При этом следует учитывать объективные требования к стабильности динамики капитала и осуществлять структурную оптимизацию всех составляющих эффективного спроса, обеспечивающих требуемую устойчивость инвестиционного процесса.
Перечень ссылок
1. Литвицький В. Найгірше позаду. "Урядовий кур'єр" № 132,2009, с. 7.
2. Габбард Р. Г. Гроші, фінансова система та економіка: Підручник. К., КНЕУ, 2004, с. 734.
3. Теория капитала и экономического роста. Под ред. С. С. Дзарасова. М., изд-во МГУ, 2004, с. 39.
4. Robinson J. Michal Kalecki on the Economic of Capitalism. "Oxford Bulletin of Economics and Statistics" № 39 (1), 1977, February, p. 7-17.
5. Kalecki M.,Kowalik T. Osservazionisulla"riformacruciale". "PoliticaedEconomia" №2-3,1971
6. Kalecki M. Dzieia. T. 2, Warszawa, 1980;Florek H.,Szefler S.Dywersjaw ekonomice. Yаrszawa, 1970.
7. Калецкий M. Очерк теории роста социалистической экономики. М., "Прогресс", 1970.
8. Дзарасов С. С. Михаил Калецкий: жизненный путь и научный вклад. "Экономическая наука современной России" № 2, 1999, с. 116—139
9. Мullег A. Michai Kalecki — wspornnienia і refleksje. "Gazeta SGH", 1.09.1999 r.
10. Аллeh P. Математическая экономия. M., Изд-во иностр. лит-ры, 1963, 668 с.
11. Чернышев С. И., Воронин А. В., Разумовский С. А. Проблема моделирования экономической динамики, http://chvr-article.narod.ru.
12. Беллман Р. Теория устойчивости решений дифференциальных уравнений. М., Изд-во иностр. лит-ры, 1954, 216 с.
13. Трикоми Ф. Дифференциальные уравнения. М., Изд-во иностр. лит-ры, 1962, 352 с.
14. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М., "Наука", 1971, с. 401 (уравнение 2.162).
15. Янке Е., Эмде Ф., Леш Ф. Специальные функции.- М., "Наука", 1977, 344 с.
16. Воронин А. В. Циклы в задачах нелинейной макроэкономики. - X., "ИНЖЭК", 2006, 136 с.