Смекни!
smekni.com

Модель бензоколонки (стр. 1 из 3)

ЛАБОРАТОРНАЯ РАБОТА № 2

МОДЕЛЬ БЕНЗОКОЛОНКИ

ВВЕДЕНИЕ

Представим ситуацию: предприниматель собирается вложить деньги в строительство новой бензоколонки, однако точного представления о том, сколько автомашин будет ежедневно заправляться на этой колонке, у него нет. Их число, вероятно, может колебаться в некотором диапазоне. Но он хотел бы ориентировочно знать, какова должна быть оптимальная структура бензоколонки и на получение какой прибыли можно рассчитывать.

На эти вопросы можно дать ответы с помощью математической модели. Поскольку входные данные имеют неопределенный характер, это должна быть статистическая модель.

Все начинается с разработки концептуальной модели. Прежде всего нужно выбрать математическую схему, которая ближе всего подходит к такой экономической системе, как бензоколонка. Нужно также установить, что является входными параметрами модели, а что выходными характеристиками. Далее нужно выбрать показатель и критерий эффективности будущей экономической системы.

Потом нужно разработать алгоритм и составить программу на алгоритмическом языке, отладить ее и убедиться в том, что она обеспечивает получение достоверных результатов. Наконец, нужно выбрать конкретные исходные данные и провести серию расчетов при разных значениях входных параметров. Анализ результатов моделирования позволит дать ответ на все вышеперечисленные вопросы.

Для описания работы бензоколонки больше всего подходит схема системы массового обслуживания, или сокращенно СМО. Для таких систем характерны три отличительные особенности:

1) имеется поток клиентов, желающих быть обслуженными (в данном случае это поток автомашин);

2) имеются устройства или агрегаты, которые обеспечивают удовлетворение заявок клиентов (в данном случае одна или несколько раздаточных колонок);

3) имеется определенный набор правил обслуживания клиентов (в данном случае можно, например, считать, что все клиенты равноправны, т. е. никто не имеет права на заправку вне очереди).

СМО различаются прежде всего по числу мест или каналов обслуживания (одноканальная, двухканальная и т. д.).

Предприниматель пока не знает, сколько раздаточных колонок выгоднее иметь. Если они будут простаивать, он будет терпеть убытки.Значит, в модели нужно сделать число каналов обслуживания переменным, т. е. включить его в состав входных параметров. В задачу моделирования будет входить определение оптимального числа каналов. Оно будет зависеть от соотношения между средним временем между поступлением заявок (приезд автомашин) и средним временем обслуживания (время заправки), которое нужно задать как входные характеристики модели.

Среднее время обслуживания можно определить, понаблюдав за работой какой-нибудь действующей бензоколонки. А среднее время между соседними заявками зависит от интенсивности потока автомашин на том участке дороги, где будет бензоколонка. Среднее количество автомашин, которые будут заправляться, необходимо оценить приближенно. Нужно выбрать подходящий для типичного потока автомашин на данном участке дороги закон распределения случайных величин времени между соседними автомашинами, заезжающими на заправку. Опыт показывает, что лучше всего такой поток описывается показательным распределением с заданным средним значением случайной величины. А возможные значения случайного времени между соседними заявками будут определяться в модели с помощью датчика случайных чисел.

Но время обслуживания тоже не постоянно для всех автомашин. Это случайная величина, и нужно определить закон ее распределения. Понаблюдав за работой действующей бензоколонки, можно установить эмпирическое распределение реального времени обслуживания. Но при построении первого варианта модели чаще всего обычно выбирают одно из стандартных распределений, которое ближе всего подходит к полученному эмпирическому распределению. В дальнейшем модель может быть уточнена.

Для начала остановимся на показательном распределении. Мыуже выбрали его для времени между соседними заявками. Там было одно среднее значение для времени между заявками, а здесь другое - для времени обслуживания.

Для построения модели нужно также высказать предположение о том, как будут себя вести клиенты, если им придется стоять в очереди. В СМО обычно описывается один из трех вариантов режима ожидания: с неограниченным ожиданием; с ограниченным ожиданием и без ожидания.

В нашем случае больше подойдет вариант с ограниченным ожиданием. При этом достаточно ввести в модель в качестве входной переменной максимальное время ожидания. Тогда в процессе моделирования заявка с временем ожидания, превышающим максимально допустимое, будет покидать систему необслуженной.

Мы ввели почти все входные переменные. Осталось только ограничить период функционирования системы. Нужно ввести время начала и время конца работы, чтобы расчеты каждой случайной реализации проводились в одинаковых условиях.

Набор выходных характеристик зависит от того, что мы примем в качестве показателя эффективности процесса функционирования системы. Это, между прочим, самый важный момент в процессе создания концептуальной модели исследуемой системы.

Эффективность - это часто употребляемое слово, смысл которого не всегда правильно трактуется. В теории эффективности показателем эффективности называют меру степени достижения поставленной цели.

Предприниматель вкладывает средства в строительство бензоколонки с целью получения прибыли. Но строительство сопряжено и с расходами, которые зависят от структуры бензоколонки, т. е. от количества раздаточных колонок. Нужно выбрать такой показатель эффективности, который отражал бы влияние на прибыль не только доходов, но и расходов. В первом варианте модели можно предположить, что все будущие клиенты будут заправлять примерно одно и то же количество бензина. Тогда доход будет определяться по формуле:

Дох = С1 * Nобс.ср,

где Дох - средний доход за период функционирования системы;

С1 - средняя стоимость заправки одной автомашины;

Nобс.ср - среднее число заправленных автомашин.

Расходы можно оценить по данным о стоимости строительства действующих бензоколонок. Предположим, что расходы связаны с числом каналов NK некоторой функциональной зависимостью:

Расх = F(NK).

Итак, показатель эффективности для нашей модели имеет вид:

Эфф = Дох - Расх.

Можно сформировать безразмерный показатель эффективности. Поделим доход и расход на коэффициент С1. Получим следующее выражение для показателя эффективности:

Сотн.ср = Nобс.ср – F1(NK),

где Сотн.ср - средняя относительная прибыль;

F1(NК) - безразмерная функциональная зависимость расходов от числа каналов.

Но, кроме показателя эффективности, существует еще критерий эффективности. В теории эффективности критерием эффективности называют правило, с помощью которого выбирается наивыгоднейший вариант структуры моделируемой системы. Если имеется несколько показателей эффективности, то критерий объединяет их в единое выражение.

В данном случае показатель один, а поэтому в качестве критерия естественно принять условие достижения максимума этого показателя. На практике это означает, что нужно перебрать несколько вариантов структуры модели при разных значениях входных параметров и установить, при каких условиях выбранный нами показатель эффективности будет достигать максимума. Для наглядности можно привести выражение для определения величины критерия эффективности. Оно будет иметь вид:

Критерий эффект. =

,

Где u – порядковый номер варианта расчета, принадлежащий множеству U.

Однако в самой алгоритмической модели эта формула использоваться не будет. Ею должен руководствоваться исследователь, производящий расчеты различных вариантов при переменных значениях входных параметров модели.


1. КОНЦЕПТУАЛЬНАЯ МОДЕЛЬ

Пусть имеется система массового обслуживания с переменным числом каналов NK, которое может принимать любое значение в диапазоне от одного до трех. Входной поток заявок - простейший, следовательно, время между соседними заявками имеет показательное распределение с известным математическим ожиданием (средним значением) Тз.ср.

Время обслуживания заявки в любом канале - величина случайная, имеющая показательное распределение с известным средним временем обслуживания Тобс.ср.

Все заявки однородны и независимы.

Правило(дисциплина) обслуживаниясостоит в том, что очередная заявка поступает в тот канал, который раньше других освободился. Если время ожидания начала обслуживания превышает заданную величину Тож.max, то заявка покидает систему необслуженной. Период функционирования СМО характеризуется величиной Tкон.

Таким образом, входными характеристиками модели являются: число каналов NK,среднее время между соседними заявками Tз.ср, среднее время обслуживания заявки Тобс.ср, максимально допустимое время ожидания Тож.mах,период работы системы Ткон., число случайных реализаций моделируемого процесса Np.

Выходной характеристикой модели является среднее число обслуженных заявок Nобс.ср

Выбор показателя и критерия эффективности

В качестве показателя эффективности работы системы целесообразно выбрать среднюю прибыль, определяемую по формуле

Сcр = С1 * Nобс.ср – С2(NK), (1)

где С1 - чистая прибыль, полученная в результате обслуживания однойзаявки;