Смекни!
smekni.com

Моделирование экономики (стр. 2 из 9)

Теория экономического роста – позволяет моделировать общее и социальное развитие стран в целом.

Региональный анализ – исследует уровни экономического развития регионов, их специализации, отраслевые структуры.

Пространственный анализ – исследует размещение населенных центров в связи с их экономическим значением, сферой сбыта продукции. Отрасли делятся на пространствоемкие ( сельское хозяйство, рыболовство ), точечные ( обрабатывающая промышленность ), сокращающая расстояние ( транспорт и связь ).

3. Экономическая кибернетика рассматривает применение общих законов кибернетики в изучении экономических явлений ( системный анализ экономики, теория экономической информации ).

Системный анализ экономики – рассматривает экономические объекты как систему, главный инструмент – модель изучаемой системы.

Теория экономической информации - рассматривает процессы происходящие в экономике, только с информационной стороны, рационализацию потоков экономической информации, ее полезность.

4. Методы принятия оптимальных решений ( теория игр, массового обслуживания, управления запасами и др.).

2. Модель – понятие, которое определить трудно. В одной работе было перечислено 31 определение. Это понятие знакомо каждому : игрушечный самолет – модель самолета. Фотоснимок пейзажа – это модель местности,

s = vt ( путь = скорость * на время, модель движущегося тела, математическая модель ).

Модели могут быть более или менее точные, более или менее простые или сложные, материальные ( вещественные ) и знаковые ( например, графические ).

Материальные модели – модели гидроэлектростанций, воспроизводящие реку, горы ;

Термин «модель» происходит от латинского слова «modulus» - образец Моделью некоторого объекта, явления называется исскуственная система или объект, которые в определенных условиях могут заменить оригинал путем воспроизведения свойств и характеристик оригинала.

Модель есть вспомогательным средством, которое в определенной ситуации заменяет оригинал при исследовании его свойств. Различают модели следующих видов

1) физические ( внешнего подобия ),

2) схематические ( графические ),

3) словесные ( вербальные ),

4) математические.

Математические модели являются наиболее абстрактными.

Под ЭМ моделями понимаются математические модели, применяемые для решения экономических задач и описания экономических процессов или явлений. ЭМ модели бывают

1 теоретико-аналитические и прикладные,

2 общие и частные,

3 непрерывные и дискретные,

4 статические и динамические,

5 детерминированные и стохастические,

6 матричные и др.

Большое значение в экономики имеют оптимизационные модели. Они состоят из целевой функции или критерия оптимальности и ограничений.

Целевая функция – ( или функция цели, название оптимизируемой функции ) – функция, оптимум которой требуется найти

ƒ ( х )

opt (max, min).

Критерий оптимальности – признак, характеризующий качество принимаемого решения.

К = opt ƒ ( х ), x є X.

Ограничения выражаются равенствами и неравенствами

F1( х ) > A,

F2( х ) = В.,

Важное свойство ЭМ моделей – их применимость к разным

ситуациям. Например выпуск продукции и внесение удобрений можно описать одинаковой моделью.


Лекция 3 Тема: Этапы экономико - математическогомоделирования

План

1. Анализ этапов экономико-математического моделирования.

2. Вербально-информационное описание как начальный этап моделирования.

3. Модели мировой динамики.

1. Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов.

Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования. На первом этапе мы конструируем (или находим в реальном мире) другой объект – модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования.

На пример, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели. Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности).

На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвраща­емся к проблематике объекта-оригинала.

Моделирование представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может после­довать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможно­сти самосовершенствования.

Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ, модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно.

1. Постановка экономической проблемы и ее качествен­ный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свой­ства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегировано и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.

3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.