Смекни!
smekni.com

Моделирование систем массового обслуживания (стр. 9 из 13)

1+2+3+ m = m(m+1)

2

Тогда получим формулу

L’оч= m(m+1)* p0 = m(m+1) (p=1).

2 2(m+1)

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Точ = Lоч/А (при р ≠ 1) и Т1оч= L’оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ λ, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lочявляется функцией от λ и μ и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р ≠ 1) к уменьшению Точ ростом λ, поскольку доля таких заявок с ростом λ увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m—> →∞, то случаи р < 1 и р ≥1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

р0=1-р

р1=р*(1-р)

p2=p2(1-p)

pkk*(1 - р)

При достаточно большом к вероятность pk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А —λ Q — λ следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч =p21-p

а среднее время ожидания по формуле Литтла

Точ = Lоч

В пределе р << 1 получаем Точ = ρ / μт.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р ≥ 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t → ∞). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки. Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем ρ и μ, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена — среднее число заявок, находящихся в очереди, равно:

Lсмо= m+1 ;2

Тсмо= Lсмо; при p ≠1

Aтогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m+1 при p ≠1 2μ

3.5 Одноканальная СМО с неограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью λ и интенсивностью обслуживания µ.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

- канал свободен, очереди нет,
;

- канал занят обслуживанием, очереди нет,
;

- канал занят, одна заявка в очереди,
;

- канал занят
, заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m→∞:


Рис. 3.5 Граф состояний одноканальной СМО с неограниченной очередью.

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем

. Такая последовательность представляет собой сумму бесконечного числа членов при
. Эта сумма сходится, если прогрессия, бесконечно убывающая при
, что определяет установившийся режим работы СМО, с при
очередь при
с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому

, следовательно, относительная пропускная способность
, соответственно
, а абсолютная пропускная способность

.

Вероятность пребывания в очереди k заявок равна:

;

Среднее число заявок в очереди –

;

Среднее число заявок в системе –

;

Среднее время пребывания заявки в системе –

;

Среднее время пребывания заявки с системе –

.

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания

, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при
.

3.6 Многоканальная СМО с ограниченной длиной очереди

Рассмотрим многоканальную СМО

, на вход которой поступает пуассоновский поток заявок с интенсивностью
, а интенсивность обслуживания каждого канала составляет
, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

- все каналы свободны,
;

- занят только один канал (любой),
;