1+2+3+ m = m(m+1)
2
Тогда получим формулу
L’оч= m(m+1)* p0 = m(m+1) (p=1).
2 2(m+1)
Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла
Точ = Lоч/А (при р ≠ 1) и Т1оч= L’оч /А(при р = 1).
Такой результат, когда оказывается, что Точ ~ 1/ λ, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lочявляется функцией от λ и μ и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.
Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р ≠ 1) к уменьшению Точ ростом λ, поскольку доля таких заявок с ростом λ увеличивается.
Если отказаться от ограничения на длину очереди, т.е. устремить m—> →∞, то случаи р < 1 и р ≥1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду
р0=1-р
р1=р*(1-р)
p2=p2(1-p)
pk=рk*(1 - р)
При достаточно большом к вероятность pk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А —λ Q — λ следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:
Lоч =p21-p
а среднее время ожидания по формуле Литтла
Точ = Lоч/А
В пределе р << 1 получаем Точ = ρ / μт.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р ≥ 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t → ∞). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки. Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем ρ и μ, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.
В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена — среднее число заявок, находящихся в очереди, равно:
Lсмо= m+1 ;2
Тсмо= Lсмо; при p ≠1
Aтогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:
Тсмо= m+1 при p ≠1 2μ
3.5 Одноканальная СМО с неограниченной очередью
В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.
В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).
Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.
Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью λ и интенсивностью обслуживания µ.
Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.
Размеченный граф состояний такой системы приведен на рис. 3.5
Количество возможных состояний ее бесконечно:
- канал свободен, очереди нет, ; - канал занят обслуживанием, очереди нет, ; - канал занят, одна заявка в очереди, ; - канал занят , заявка в очереди.Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m→∞:
Рис. 3.5 Граф состояний одноканальной СМО с неограниченной очередью.
Следует заметить, что для СМО с ограниченной длиной очереди в формуле
имеет место геометрическая прогрессия с первым членом 1 и знаменателем
. Такая последовательность представляет собой сумму бесконечного числа членов при . Эта сумма сходится, если прогрессия, бесконечно убывающая при , что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому
, следовательно, относительная пропускная способность , соответственно , а абсолютная пропускная способность .Вероятность пребывания в очереди k заявок равна:
;Среднее число заявок в очереди –
;Среднее число заявок в системе –
;Среднее время пребывания заявки в системе –
;Среднее время пребывания заявки с системе –
.Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания
, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при .3.6 Многоканальная СМО с ограниченной длиной очереди
Рассмотрим многоканальную СМО
, на вход которой поступает пуассоновский поток заявок с интенсивностью , а интенсивность обслуживания каждого канала составляет , максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать. - все каналы свободны, ; - занят только один канал (любой), ;