Смекни!
smekni.com

Моделирование систем массового обслуживания (стр. 7 из 13)

а вероятность р1(t) в то же время увеличивается от 0, стремясь в пределе при t→∞ к величине

Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии

Функции р0(t) и р1(t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени

характерной для рассматриваемой системы.

С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3τ.

Вероятность р0(t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.

Действительно, р0(t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем λ заявок и из них обслуживается λр0 заявок.

Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной

В пределе при t→∞ практически уже при t>3τ значение относительной пропускной способности будет равно

Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t→∞, равна:

Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:

а общее число не обслуженных заявок равно

Примерами одноканальных СМО с отказами в обслуживании являются: стол заказов в магазине, диспетчерская автотранспортного предприятия, контора склада, офис управления коммерческой фирмы, с которыми устанавливается связь по телефону.

3.2 Многоканальная СМО с отказами в обслуживании

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на рис. 3.2, на вход которой поступает пуассоновский поток заявок с интенсивностью λ.


λ λ

λ λ λ
S0
S1
Sk
Sn

μ 2μkμ (k+1)μ nμ

Рис. 3.2. Размеченный граф состояний многоканальной СМО с отказами

Поток обслуживания в каждом канале имеет интенсивность μ. По числу заявок СМО определяются ее состояния Sk, представленные в виде размеченного графа:

S0 – все каналы свободны k=0,

S1 – занят только один канал, k=1,

S2 – заняты только два канала, k=2,

Sk – заняты k каналов,

Sn – заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S0 в S1, происходит под воздействием входного потока заявок с интенсивностью λ, а обратно – под воздействием потока обслуживания заявок с интенсивностью μ. Для перехода системы из состояния Skв Sk-1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kμ, следовательно, поток событий, переводящий систему из Snв Sn-1, имеет интенсивность nμ. Так формулируется классическая задача Эрланга, названная по имени датского инженера – математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

.

Вычислив все вероятности состояний n – канальной СМО с отказами р0 , р1, р2, …,рk,…, рn, можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии Sn:

k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому

Роткобс=1

На этом основании относительная пропускная способность опредляется по формуле

Q = Pобс= 1-Ротк=1-Рn

Абсолютную пропускную способность СМО можно определить по формуле

А=λ*Робс

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Тсмо= nз/λ.

3.3 Модель многофазной системы обслуживания туристов

В реальной жизни система обслуживания туристов выглядит значительно сложнее, поэтому необходимо детализировать постановку задачи, учитывая запросы, требования как со стороны клиентов, так и турфирмы.

Для увеличения эффективности работы турфирмы необходимо смоделировать в целом поведение потенциального клиента от начала операции до ее завершения. Структура взаимосвязи основных систем массового обслуживания фактически состоит из СМО разного вида (рис. 3.3).

Поиск Выбор Выбор Решение

СМОффирма
СМОрреферент

поиск фирмы тура по туру

Оплата Перелет Исход