Тогда совместная ковариационная матрица
где
Обратная матрица
Отcюда находим вектор коэффициентов дискриминантной функции по формуле:
т.е.
Подставим полученные значения коэффициентов в формулу (18) и рассчитаем значения дискриминантной функции для каждого объекта:
Тогда константа дискриминации С будет равна:
С =
После получения константы дискриминации можно проверить правильность распределения объектов в уже существующих двух классах, а также провести классификацию новых объектов.
Рассмотрим, например, объекты с номерами 1, 2, З, 4. Для того чтобы отнести эти объекты к одному из двух множеств, рассчитаем для них значения дискриминантных функций (по трем переменным):
Таким образом, объекты 1, 2 и 4 относятся ко второму классу, а объект 3 относится к первому классу, так как
4. Классификация при наличии kобучающих выборок
При необходимости можно проводить разбиение множества объектов на kклассов (при k> 2). В этом случае нужно рассчитать kдискриминантных функций, так как классы будут отделяться друг от друга индивидуальными разделяющими поверхностями. На рис. 3 показан случай с тремя множествами и тремя дискриминантными переменными:
Рис.3 Три класса объектов и разделяющие их прямые
Пример 2.Рассмотрим случай, когда существует три класса (множества) объектов. Для этого к двум классам из предыдущего примера добавим еще один. В этом случае будем иметь уже три матрицы исходных данных:
Если в процессе дискриминации используются все четыре переменные (
Определим теперь, к какому классу можно отнести каждое из четырех наблюдений, приведенных в табл.2:
Таблица 2- Исходные данные
Номер наблюдения | | | | |
1 | 1,07 | 93,5 | 5,30 | 5385 |
2 | 0,99 | 84,0 | 4,85 | 5225 |
3 | 0,70 | 76,8 | 3,50 | 5190 |
4 | 1,24 | 88,0 | 4,95 | 6280 |
Подставим соответствующие значения переменных
Следовательно, наблюдение 1 в табл.2 относится к первому классу. Аналогичные расчеты показывают, что и остальные три наблюдения следует отнести тоже к первому классу.
Чтобы показать влияние числа дискриминантных переменных на результаты классификации, изменим условие последнего примера. Будем использовать для расчета дискриминантных функций только три переменные:
Подставив в эти выражения значения исходных переменных для классифицируемых объектов, нетрудно убедиться, что все они попадают в третий класс, так как
Таким образом, мы видим, что изменение числа переменныx сильно влияет на результат дискриминантного анализа. Чтобы судить о целесообразности включения (удаления) дискриминантной переменной, обычно используют специальные статистические критерии, позволяющие оценить значимость ухудшения или улучшения разбиения после включения (удаления) каждой из отобранных переменных.
5. Взаимосвязь между дискриминантными переменными и дискриминантными функциями
Для оценки вклада отдельной переменной в значение дискриминантной функции целесообразно пользоваться стандартизованными коэффициентами дискриминантной функции. Стандартизованные коэффициенты можно рассчитать двумя путями:
·стандартизовать значения исходных переменных таким образом, чтобы их средние значения были равны нулю, а' дисперсии - единице;
·вычислить стандартизованные коэффициенты исходя из значений коэффициентов в нестандартной форме:
·
где р - общее число исходных переменных, т - число групп,
где i- номер наблюдения, j - номер переменной, k- номер класса,