Смекни!
smekni.com

Методы дискриминантного анализа (стр. 3 из 4)

Тогда совместная ковариационная матрица

будет равна:

, (20)

где

,
- число объектов l-й и 2-й группы;

(21)

Обратная матрица

будет равна:

.(22)

Отcюда находим вектор коэффициентов дискриминантной функции по формуле:

(23)

т.е.

=-185,03,
=1,84,
=4,92.

Подставим полученные значения коэффициентов в формулу (18) и рассчитаем значения дискриминантной функции для каждого объекта:

(24)

Тогда константа дискриминации С будет равна:

С =

(94,4238-70,0138) = 12,205.

После получения константы дискриминации можно проверить правильность распределения объектов в уже существующих двух классах, а также провести классификацию новых объектов.

Рассмотрим, например, объекты с номерами 1, 2, З, 4. Для того чтобы отнести эти объекты к одному из двух множеств, рассчитаем для них значения дискриминантных функций (по трем переменным):

= -185,03 х 1,07 + 1,84 х 93,5 + 4,92 х 5,30 = 0,1339,

= -185,03 х 0,99 + 1,84 х 84,0 + 4,92 х 4,85 = -4,7577,

= -185,03 х 0,70 + 1,84 х 76,8 + 4,92 х 3,50 = 29,0110,

= -185,03 х 1,24 + 1,84 х 88,0 + 4,92 х 4,95 = -43,1632.

Таким образом, объекты 1, 2 и 4 относятся ко второму классу, а объект 3 относится к первому классу, так как

< с,
< с,
> с,
< с.

4. Классификация при наличии kобучающих выборок

При необходимости можно проводить разбиение множества объектов на kклассов (при k> 2). В этом случае нужно рассчитать kдискриминантных функций, так как классы будут отделяться друг от друга индивидуальными разделяющими поверхностями. На рис. 3 показан случай с тремя множествами и тремя дискриминантными переменными:

Рис.3 Три класса объектов и разделяющие их прямые

– первая,
– вторая,
- третья дискриминантные функции.

Пример 2.Рассмотрим случай, когда существует три класса (множества) объектов. Для этого к двум классам из предыдущего примера добавим еще один. В этом случае будем иметь уже три матрицы исходных данных:

(25)

Если в процессе дискриминации используются все четыре переменные (

,
,
,
) то для каждого класса дискриминантные функции имеют вид:

(26)

Определим теперь, к какому классу можно отнести каждое из четырех наблюдений, приведенных в табл.2:

Таблица 2- Исходные данные

Номер наблюдения
1 1,07 93,5 5,30 5385
2 0,99 84,0 4,85 5225
3 0,70 76,8 3,50 5190
4 1,24 88,0 4,95 6280

Подставим соответствующие значения переменных

,
,
,
в выражение (26) и вычислим затем разности:

-
=-20792,082+31856,41=11064,328
0,

-
=-20792,082+40016,428=19224,346
0.

Следовательно, наблюдение 1 в табл.2 относится к первому классу. Аналогичные расчеты показывают, что и остальные три наблюдения следует отнести тоже к первому классу.

Чтобы показать влияние числа дискриминантных переменных на результаты классификации, изменим условие последнего примера. Будем использовать для расчета дискриминантных функций только три переменные:

,
,
. В этом случае выражения для дискриминантныx функций будут иметь вид:

(27)

Подставив в эти выражения значения исходных переменных для классифицируемых объектов, нетрудно убедиться, что все они попадают в третий класс, так как

-
=-26,87
0,

-
=-37,68
,

-
=-10,809
.

Таким образом, мы видим, что изменение числа переменныx сильно влияет на результат дискриминантного анализа. Чтобы судить о целесообразности включения (удаления) дискриминантной переменной, обычно используют специальные статистические критерии, позволяющие оценить значимость ухудшения или улучшения разбиения после включения (удаления) каждой из отобранных переменных.


5. Взаимосвязь между дискриминантными переменными и дискриминантными функциями

Для оценки вклада отдельной переменной в значение дискриминантной функции целесообразно пользоваться стандартизованными коэффициентами дискриминантной функции. Стандартизованные коэффициенты можно рассчитать двумя путями:

·стандартизовать значения исходных переменных таким образом, чтобы их средние значения были равны нулю, а' дисперсии - единице;

·вычислить стандартизованные коэффициенты исходя из значений коэффициентов в нестандартной форме:

·

(28)

где р - общее число исходных переменных, т - число групп,

- элементы матрицы ковариаций:

(29)

где i- номер наблюдения, j - номер переменной, k- номер класса,

- количество объектов в k-мклассе.