Смекни!
smekni.com

Методы анализа основной тенденции (тренда) в рядах динамики (стр. 3 из 5)

где

- осредненные эмпирические уровни ряда по одноименным периодам (месяцам или кварталам);
или
- общий средний уровень ряда.

Для наглядного представления сезонной волны индексы сезонности изображаются в виде графиков. Применение метода простой средне для расчета сезонной волны дает возможность нейтрализовать случайные колебания показателей исследуемого ряда динамики и определить сезонные колебания в среднем за весь период.

Если в ряду внутригодовой динамики имеется ярко выраженная общая тенденция к росту или снижению, то индексы сезонности определяются на основе метода аналитического выравнивания, который позволяет исключить влияние тенденции роста.

Метод относительных чисел применяется для анализа сезонности тех рядов динамики, развитие общей тенденции которых происходит равномерно. Основной недостаток- механическое внесение относительно единственной поправки в анализируемые отрезки времени, которая означает признание равномерного развития уровней явления.

Анализ сезонности методом Персонса в рядах динамики, отражающих развитие явлений, общая тенденция которых изменяется по средней геометрической, то есть по сложным процентам. Суть метода заключается в исчислении показателей средней сезонной волны как медианных значений из цепных отношений. Здесь погрешность устраняется с помощью коэффициента подъема или снижения общей тенденции по средней геометрической.

Во многих случаях, когда в рядах динамики наблюдается явно выраженные периодические колебания, для описания тренда следует использовать спектральный анализ, когда динамический ряд аппроксимируется функциями Фурье. Другими словами, он представляет собой операцию по выражению заданной периодической функции в виде ряда Фурье по гармоникам разных порядков. Фурье показал, что дифференцируемая функция может быть представлена в виде некоторого ряда, все члены которого представляют собой гармонические функции. Каждый член ряда представляет собой слагаемое постоянной величины с функциями cos и sin определенного периода. Нахождение конечной суммы уровней с использованием функций косинусов и синусов времени называется гармоническим анализом.

,

где k- гармоника ряда Фурье, которая может быть взята с разной степенью точности (чаше всего от 1 до 4)

Для отыскания параметров уравнения используется метод наименьших квадратов:

,

;
;
.

В связи с тем, что уравнение колебательного процесса (гармоники) формируется с помощью основных тригонометрических функций, то оно является предметом подборного рассмотрения в математической статистике.

Обобщающим показателем силы колеблемости динамического ряда из-за сезонного характера производства или обращения служит среднее квадратическое отклонение индексов сезонности, то есть:

.

Сравнение показателей

, вычисленных за разные периоды, показывает сдвиги в сезонности.

2. Методы анализа основной тенденции (тренда) в рядах динамики.

Одна из важнейших задач статистики- определение в рядах динамики общей тенденции развития.

Основной тенденцией развития называется плавное и устойчивое изменение уровня во времени, свободное от случайных колебаний. Задача состоит в выявлении общей тенденции в изменении уровней ряда, освобожденной от действия различных факторов.

Изучение тренда включает два основных этапа:

· ряд динамики проверяется на наличие тренда;

· производится выравнивание временного ряда и непосредственно выделение тренда с экстраполяцией полученных результатов.

С этой целью ряды динамики подвергаются обработке методами укрупнение интервалов, скользящей средней и аналитического выравнивания:

1. Метод укрупнения интервалов.

Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.

2. Метод скользящей средней.

Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней.

Скользящая средняя- подвижная динамическая средняя, которая рассчитывается по ряду при последовательном передвижении на один интервал, то есть сначала вычисляют средний уровень из определенного числа первых по порядку уровней ряда, затем- средний уровень из такого же числа членов, начиная со второго. Таким образом, средняя как бы скользит по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.

Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.

Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения. Скользящие средние с продолжительностью периода, равной 3, следующие:

;
;
и т.д.

Полученные средние записываются к соответствующему срединному интервалу.

Особенность сглаживания по четному числу уровней состоит в том, что каждая из численных (например, четырехчленных) средних относится к соответствующим промежуткам между смежными периодами. Для получения значений сглаженных уровней соответствующих периодов необходимо произвести центрирование расчетных средних.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.

3. Метод аналитического выравнивания.

Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:

· если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), , сглаживание может быть выполнено по прямой;

· если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;

· при ускоренно возрастающих или замедляющихся абсолютных приростах - параболу третьего порядка;

· при относительно стабильных темпах роста- показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Цель аналитического выравнивания- определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.

После выяснения характера кривой развития необходимо определить ее параметры, что можно сделать различными методами:

1) решением системы уравнений по известным уровням ряда динамики;

2) методом средних значений (линейных отклонений), который заключается в следующем: ряд расчленяется на две примерно равные части, и вводятся преобразования, чтобы сумма выровненных значений в каждой части совпала с суммой фактических значений, например, в случае выравнивания прямой линии

;

3) выравниванием ряда динамики с помощью метода конечных разностей;

4) методом наименьших квадратов: это некоторый прием получения оценки детерминированной компоненты

, характеризующих тренд или ряд изучаемого явления.

Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ.