Основные предположения факторного анализа связаны с допущением о линейности связи исходных признаков с факторами
Общие факторы F1,…,Fk в модели (3) предполагаются независимыми стандартизованными показателями, распределенными по нормальному закону; характерные факторы U1,…,Um рассматривают как некоррелированные стандартизованные показатели, независящие от общих факторов; числа aij
Задачу факторного анализа можно сформулировать следующим образом: определить минимальное число k таких факторов F1,…,Fk после учета которых исходная корреляционная матрица “исчерпается”, внедиагональные элементы ее станут близкими к нулю. Другими словами, это значит, что после учета k факторов все остаточные корреляции между исходными признаками должны стать незначимыми.
Метод главных компонент. В основе модели для выражения исходных признаков через факторы здесь лежит предположение о том, что число факторов равно числу исходных признаков (k=m), а характерные факторы вообще отсутствуют:
где величина Xj
Очевидно, уравнения (4) определяют здесь систему преобразования одних параметров в другие. Поскольку число факторов равно числу исходных параметров, задача искомого преобразования решается однозначно, т.е. факторные нагрузки определяются в этом методе однозначно.
Каждая из переменных Fj называется здесь i-й главной компонентой. Метод главных компонент состоит в построении факторов - главных компонент, каждый из которых представляет линейную комбинацию исходных признаков. Первая главная компонента F1 определяет такое направление в пространстве исходных признаков, по которому совокупность объектов (точек) имеет наибольший разброс (дисперсию). Вторая главная компонента F2 строится с таким расчетом, чтобы ее направление было ортогонально направлению F1 и она объясняла как можно большую часть остаточной дисперсии, и т.д. вплоть до т-й главной компоненты Fm. Так как выделение главных компонент происходит в убывающем порядке с точки зрения доли объясняемой ими дисперсии, то признаки, входящие в первую главную компоненту с большими коэффициентами
Как и в центроидном методе, достаточное число компонент (факторов) определяется здесь обычно на основе некоторого заданного уровня объясненной дисперсии исходных признаков с помощью факторов (например,
Метод экстремальной группировки параметров. Данный метод также основан на обработке матрицы коэффициентов корреляции между исходными признаками. В основе этого метода лежит гипотеза о том, что совокупность исходных признаков может быть разбита на группы, каждая из которых отражает действие определенного фактора - причины. Поскольку признаки внутри каждой из таких групп должны быть связаны между собой более тесно, чем признаки разных групп, то задача сводится к выявлению “сильно закоррелированных” групп признаков, что позволяет выделить соответствующие факторы.
Формально задача об одновременной группировке параметров и выделении существенных факторов заключается в максимизации как по разбиению параметров на множества {A1,…,Ak} так и по выбору факторов {F1,…,Fk} одного из двух критериев.
где
Следует отметить связь метода экстремальной группировки параметров с рассмотренными выше методами факторного анализа: метод, связанный с максимизацией функционала I1, представляет естественное развитие метода главных компонент, а метод, связанный с максимизацией I2 представляет развитие центроидного метода. Так, если группы признаков зафиксированы, то в соответствии с выражением (5) в пределах каждой группы отыскивается первая главная компонента.
Характеризуя особенности этого метода, укажем, что факторы F1,…,Fk, здесь не общие для всех признаков; каждый из них соответствует 'своей' группе признаков. В отличие от методов, рассмотренных выше, факторы здесь не являются, вообще говоря, независимыми, ортогональными. Специфика экстремальной группировки параметров состоит, в частности, и в том, что в рамках этого метода каждый признак включается в один из формируемых факторов, в то время как при использовании других методов факторного анализа признаки могут относиться к нескольким факторам сразу или не принадлежать ни к одному из них.
Результаты факторного анализа будут успешными, если удается дать содержательную интерпретацию выявленных факторов, исходя из смысла показателей, характеризующих эти факторы. Данная стадия работы весьма ответственная; она требует от исследователя четкого представления о содержательном смысле показателей, которые привлечены для анализа и на основе которых выделены факторы. Поэтому при предварительном тщательном отборе показателей для факторного анализа следует руководствоваться их содержательным смыслом, а не стремлением к включению в анализ как можно большего их числа.
Применение теоремы о среднем значении в экономическом факторном анализе. Метод Лагранжа Чеботарева С.В.
Теорема Лагранжа (теорема о среднем значении) формулируется следующим образом : если функция f (x) непрерывна на отрезке [a;b] и дифференцируема во внутренних точках этого отрезка, то внутри отрезка [a;b] существует по крайней мере одна точка c, такая, что для неё выполняется равенство
f (b)-f(a)=f’(c)(b-a)
Дифференциальная теорема Лагранжа о среднем значении, записанная для функции многих переменных, позволяет перейти к формуле
Δy= Δxi
Поскольку, ci=xi+aΔ xi( xi; xi+ Δ xi) , a(0;1) то приращение функции можно представить в виде
Δy= Δxi,
где 0<
Вычислив данный параметр, можно найти промежуточные значения факторов, при которых достигается точное разложение анализируемого результирующего показателя на величины факторного влияния. Если же находить не требуется, то изменение результирующего показателя вычисляется с использованием интегральной формы теоремы о среднем.
Применив интегральную форму теоремы о среднем значении для функции многих переменных, получаем формулу
Δy= Δxi
Возможность вычисления точного разложения приращения функции открывает широкие перспективы для применения формулы Лагранжа в экономическом факторном анализе, так как величины, входящие в формулу разложения приращения функции, имеют содержательную экономическую интерпретацию: приращение функции Δy есть изменение результирующего показателя, а xi и Δxi – соответственно фактор и его приращение.
Новый метод экономического факторного анализа (метод Лагранжа) позволяет находить влияние вариации факторов на вариацию результирующего показателя таким образом, что все факторы равноправны по отношению друг к другу, то есть в процессе анализа не используются никакие априорные предположения о значимости того или иного фактора.
При этом, структура факторной системы сохраняет вид
Δy= .
Из полученных формул также следует вывод о том, что применение формулы Лагранжа позволяет решить проблему неразложимого остатка, величина которого оказывается распределённой между факторами.
3. Практическая значимость факторного анализа для управления предприятием