Смекни!
smekni.com

Метод потенциалов для решения транспортной задачи в матричной форме. Задача оптимального распределения ресурсов (стр. 1 из 4)

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Факультет «Экономический»

Кафедра «Экономика, финансы и управление на транспорте»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

Воронеж 2008


Задача №1

Метод потенциалов для решения транспортной задачи в матричной форме с ограничениями пропускной способности.

Задание:

1. Построить оптимальный план перевозок каменного угля с пяти станций Аi (i = 1,2,3,4,5), до девяти крупных потребителей, имеющих подъездные пути Вj (j = 1,2,…,9).

2. Определить объем тонно-километровой работы начального и оптимального планов перевозки грузов.

Исходные данные (вариант 67):

Данные о наличии ресурсов на пяти станциях отправления Аi приведены в таблице 1, данные о размерах прибытия груза Вj на девять станций назначения – в таблице 2.

Таблица 1 - Ресурсы станций отправления Аi (строки матрицы)

Номер станции отправления Значение
А1 150
А2 160
А3 400
А4 150
А5 140
Итого: 1000

Таблица 2 - Объем потребности Вj получателя (столбцы матрицы)

Номер станции назначения Значение
В1 135
В2 105
В3 95
В4 115
В5 85
В6 105
В7 90
В8 135
В9 135
Итого: 1000

Решение:

Расстояние перевозки от каждой i–й станции отправления до каждой j–й станции назначения указано в правом верхнем углу каждой клетки матрицы. В левом верхнем углу ряда клеток матрицы указаны ограничения пропускной способности.

Условием задачи установлено, что размер всех ресурсов у отправителей равен общей потребности получателей:

С учетом полученных условий необходимо найти такие неотрицательные значения величин объемов перевозок хij, при которых сумма произведений значений критерия Сij на размер перевозок будет минимальной, т.е.

Первоначально строится начальный план базисного варианта способом наименьшего значения критерия.

Любой допустимый план является оптимальным тогда и только тогда, когда каждой строке и каждому столбцу матрицы могут быть присвоены некоторые числа Ui и Vj, называемые потенциалами и отвечающие условиям:

Vj – Ui ≤ Cij для хij = 0; (1)

Vj – Ui = Cij для dij > хij> 0; (2)


Vj – Ui ≥ Cij для хij = dij; (3)

где Vj – потенциал j–го столбца;

Ui – потенциал i–й строки;

Cij – расстояние перевозки от i–го поставщика до j–го потребителя;

хij– корреспонденция (размеры перевозок) от i–го поставщика до j–го потребителя;

dij – величина пропускной способности ij клетки.

Присвоение потенциалов начинают со строки, в которой среди базисных клеток имеется максимальное расстояние. Этой строке можно присвоить любой положительный потенциал, например, 100. Затем, используя условие оптимальности (2), находят потенциалы остальных строк и столбцов по формулам:

для j–го столбца

Vj = Ui + Cij;

для i–й строки

Ui = Vj – Cij.

Корреспонденция улучшения плана находится из следующего выражения:

хул = min [хij четн, (dij – хij)нечетн]

Вj
Аi В1=135 В2=105 В3=95 В4=115 В5=85 В6=105 В7=90 В8=135 В9=135 Ui
– 90 30 100 110 150 30 50 + 60 80 90
А1=150 45 30 75 100
х 1+40 х
+ 10 40 45 50 – 25 70 30 15 30 10 30
А2=160 80 80 180
х 1+20 х 1+10
10 20 35 80 160 90 + 80 – 70 40 60
А3=400 10 105 15 135 135 90
х 1+20 1+25 1+90 х х х
50 5 40 30 120 40 75 30 40 20
А4=150 95 55 220
х х
15 15 25 10 20 35 + 25 – 80 20 70 90
А5=140 95 20 5 20 180
х х х
Vj 190 125 190 250 205 260 160 130 150

F(х) = 45·90 + 30·50 + 75·60 + 80·10 + 80·25 + 10·20 + 105·35 + 15·70 + 135·40 + 135·60 + 95·30 + 55·40 + 95·10 + 20·35 + 5·25 + 20·80 = 39700 ден. ед.

80 – 70 + 60 – 90 + 10 – 25 + 25 – 80 = – 90 < 0 – цикл подходит

r = {15; 45; 80; 20} =15

Вj
Аi В1=135 В2=105 В3=95 В4=115 В5=85 В6=105 В7=90 В8=135 В9=135 Ui
– 90 + 30 100 110 150 30 50 60 80 90
А1=150 30 30 90 100
х 1+85 1+40 х 1+40 1+50
+10 40 45 50 – 25 70 30 15 30 10 30
А2=160 95 65 180
х 1+20 х 1+10 1+10
10 20 – 35 80 160 90 + 80 70 40 60
А3=400 10 105 15 135 135 180
х х х х
50 5 40 30 120 40 75 30 40 20
А4=150 95 55 220
х х
15 15 25 10 20 35 + 25 – 80 20 70 90
А5=140 95 20 20 5 180
х х х
Vj 190 215 190 250 205 260 160 220 240

F(х) = 39700 – 90·15 = 38350 ден.ед.

30 – 90 + 10 – 25 + 25 – 80 + 80 – 35 = – 85 < 0 – цикл подходит

r = {30; 65; 5; 105} = 5

Вj
Аi В1=135 В2=105 В3=95 В4=115 В5=85 В6=105 В7=90 В8=135 В9=135 Ui
– 90 + 30 100 110 150 30 50 60 80 90
А1=150 25 5 30 90 100
х х х
+ 10 40 45 50 – 25 70 30 15 30 10 30
А2=160 100 60 180
х х
10 20 – 35 80 160 + 90 80 70 40 60
А3=400 10 100 20 135 135 95
х 1+15 1+20 х х х
50 5 40 30 120 40 75 30 40 20
А4=150 95 55 135
1+5 1+15 х х
15 15 25 10 20 35 25 80 20 70 90
А5=140 95 20 25 180
х х
Vj 190 130 190 165 205 175 160 135 155

F(х) = 38350 – 85·5 = 37925 ден.ед.

90 – 25 + 10 – 90 + 30 – 35 = – 20 < 0 – цикл подходит

r = {60; 25; 100} = 25


Вj
Аi В1=135 В2=105 В3=95 В4=115 В5=85 В6=105 В7=90 В8=135 В9=135 Ui
90 30 100 110 150 30 50 60 80 90
А1=150 30 30 90 105
х х
10 40 45 50 25 70 30 15 30 10 30
А2=160 125 35 165
х х
10 20 35 80 160 90 80 70 40 60
А3=400 10 75 25 20 135 135 100
х х х х х
50 5 40 30 120 40 75 30 40 20
А4=150 95 55 140
х х
15 15 25 10 20 35 25 80 20 70 90
А5=140 95 20 25 165
х х
Vj 175 135 175 170 190 180 165 140 160

План оптимальный.

F(х) = 37925 – 20·25 = 37425 ден.ед.

Ответ: F(х)нач. = 39700 ден.ед.; F(х)опт. = 37425 ден.ед.

Задача №2

Графический метод решения задачи оптимизации производственных процессов

Задание: Решить задачу линейного программирования графическим методом. Исходные данные (вариант 7):

Целевая функция: f(x) = x1 + 2x2 → max,

Ограничения: –x1 – x2 ≥ –1, x1– 2x2 ≤ 1.

Решение:


–х1 – х2 ≥ –1

х1 – 2х2 ≤ 1 (–1)

х1 ≥ 0; х2 ≥ 0

х1 + х2 ≤ 1

2 – х1 ≥ 1

х1 + х2 = 1

х1 = 1 – х2

Если х1 = 0, то х2 = 1;

если х2 = 0, то х1 = 1.

х1 – 2х2 = 1

х1 = 1 + 2х2

Если х1 = 0, то х2 = –1/2;

если х2 = 0, то х1 = 1.

Строим прямые уравнений ограничений и находим область допустимых решений (рис. 1).

х2 ≤ – х1 +1 – нижняя полуплоскость;

2 ≥ х1 –1 – верхняя полуплоскость.

Рис. 1 - Решением системы неравенств является т. С (0;1)

Ответ: х1= 0

х2 = 1

Задача №3

Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством.

Исходные данные (вариант 7):

Целевая функция: f(x) = x1 + 2x2 –3х3 → max.

Ограничения: x1 + x2 + х3 = 25,

2x1 – 3x2 + 3х3 ≥ 10;

x1 – 3x2 + 4х3 ≤ 30.

Решение:

Т.к. дана задача на максимизацию целевой функции f, то она сводится к задаче на минимизацию функции –f.