0,16 – 0,08х2 = 0,14 – 0,04х3
0,14 – 0,04х3 = 0,12 – 0,04х4
0,12 – 0,04х4 = 0,1 – 0,02х5
х1 + х2 + х3 + х4 + х5 = 8,5
0,1х1 – 0,08х2 = 0,18 – 0,160,08х2 – 0,04х3 = 0,16 – 0,14
0,04х3 – 0,04х4 = 0,14 – 0,12
0,04х4 – 0,02х5 = 0,12 – 0,1
х1 + х2 + х3 + х4 + х5 = 8,5
0,1х1 – 0,08х2 = 0,020,08х2 – 0,04х3 = 0,02 50
0,04х3 – 0,04х4 = 0,02
0,04х4 – 0,02х5 = 0,02
х1 + х2 + х3 + х4 + х5 = 8,5
5х1 – 4х2 = 1 (1)4х2 – 2х3 = 1 (2)
2х3 – 2х4 = 1 (3)
2х4 – х5 = 1 (4)
х1 + х2 + х3 +х4 + х5 = 8,5 (5)
Из 4 – го ур – ия: х5 = 2х4 – 1
5х1 – 4х2 = 14х2 – 2х3 = 1
2х3 – 2х4 = 1
х1 + х2 + х3 +х4 + 2х4 – 1= 8,5
4х2 – 2х3 = 1 (2)
2х3 – 2х4 = 1 (3)
х1 + х2 + х3 + 3х4 = 9,5 (4)
Из 3 – го ур – ия: х4 = х3 – 0,5
5х1 – 4х2 = 14х2 – 2х3 = 1
х1 + х2 + х3 + 3 (х3 – 0,5) = 9,5
5х1 – 4х2 = 14х2 – 2х3 = 1
х1 + х2 + 4х3 – 1,5 = 9,5
5х1 – 4х2 = 1 (1)4х2 – 2х3 = 1 (2)
х1 + х2 + 4х3 = 11 (3)
Из 2 – го ур – ия: х3 = 2х2 – 0,5
5х1 – 4х2 = 1х1 + х2 + 4 (2х2 – 0,5) = 11
5х1 – 4х2 = 1х1 + х2 + 8х2 – 2 = 11
5х1 – 4х2 = 1 (1)х1 + 9х2 = 13 (2)
Из 2 – го ур – ия: х1 = 13 – 9х2
5 (13 – 9х2) – 4х2 = 1
65 – 45х2 – 4х2 = 1
49х2 = 64
х2 = 1,306
х1 = 13 – 9 1,306 = 1,246
х3 = 2 1,306 – 0,5 = 2,112
х4 = 2,112 – 0,5 = 1,612
х5 = 2 · 1,612 – 1 = 2,224
П5 = 0,18 1,246 – 0,05 1,2462 + 0,16 1,306 – 0,04 1,3062 + 0,14 2,112 – 0,02 2,1122 + 0,12 1,612 – 0,02 1,6122 + 0,1 2,224 – 0,01 2,2242 = 0,224 – 0,078 + 0,209 – 0,068 + 0,296 – 0,089 + 0,193 – 0,052 + 0,222 – 0,049 = 0,808 млрд.руб.
Ответ: Максимальное значение прибыли П5 = 0,808 млрд. руб.
Распределение инвестиций: х1 = 1,246 млрд. руб.
х2 = 1,306 млрд. руб.
х3 = 2,112 млрд. руб.
х4 = 1,612 млрд. руб.
х5 = 2,224 млрд. руб.
Задача №6
Метод экспертных оценок для отбора кандидата из кадрового резерва на должность руководителя.
Задание:
Требуется методом экспертного ранжирования из группы кадрового, включающего в себя семь кандидатов, отобрать наиболее достойного, по мнению коллектива, из 10 экспертов.
После коллективного ранжирования экспертами степени подготовленности и личностных свойств всех представителей группы кадрового резерва и выбора лучшего из них определить степень согласованности мнений группы экспертов.
Исходные данные (вариант 67):
Каждый Эj эксперт оценивает степень подготовленности каждого члена группы кадрового резерва, сопоставив ему целое число – его ранг kij, т.е. номер члена группы в порядке убывания оценки степени подготовленности. Первый ранг имеет тот, кто, по мнению эксперта, подготовлен лучше других, второй – менее подготовлен, но лучший из оставшихся.
Принято, что эксперты отличаются уровнем компетентности, которую можно оценить вероятностью получения экспертом достоверной оценки. Тогда каждый эксперт получает весовой коэффициент, значение которого лежит в пределах 0 < аj ≤ 1 для Э – го эксперта.
Решение:
Для решения задачи составим матрицу мнений экспертов в виде таблицы 1.
В таблице 1 по каждому Эj столбцу хi числу из группы резерва присваивается kij ранг – целое число от 1 до n.
Получаем матрицу мнений экспертов размерностью N·n, в которой сумма элементов любого столбца равна
Наиболее подготовленного кандидата из группы на основе коллективной оценки выбирают после расчета среднего ранга для каждого из кандидатов:
,На первом месте будет кандидат, имеющий минимальный ранг, что будет соответствовать усредненному мнению коллектива из N экспертов.
Если мнения экспертов сильно расходятся, то необходимо ввести процент достоверности, т.е. согласованности экспертов. Согласованность экспертов определяется степенью рассеянности средних рангов
.Степень рассеяния определяется с помощью дисперсии средних рангов:
, ;М(k) – математическое ожидание среднего ранга.
В таблице для краткости обозначений принято:
Таблица 1 - Расчет коэффициента согласованности
Номер члена группы | Оценка эксперта | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | 4 | 3 | 4 | 4 | 2 | 5 | 4 | 1 | 3 | 7 | 3,72 | 3,70 | 0,09 |
2 | 7 | 7 | 5 | 7 | 1 | 6 | 7 | 7 | 4 | 5 | 5,59 | 5,60 | 2,56 |
3 | 5 | 4 | 3 | 3 | 5 | 3 | 3 | 3 | 7 | 2 | 3,78 | 3,80 | 0,04 |
4 | 3 | 6 | 7 | 6 | 3 | 7 | 6 | 6 | 6 | 3 | 5,21 | 5,30 | 1,69 |
5 | 6 | 1 | 2 | 1 | 4 | 2 | 2 | 2 | 1 | 4 | 2,63 | 2,50 | 2,25 |
6 | 2 | 3 | 6 | 5 | 6 | 4 | 5 | 5 | 5 | 1 | 4,06 | 4,20 | 0,04 |
7 | 1 | 2 | 1 | 2 | 7 | 1 | 1 | 4 | 2 | 6 | 2,81 | 2,70 | 1,69 |
Уровень компетентности аi | 0,9 | 0,8 | 0,7 | 0,6 | 0,8 | 0,9 | 0,6 | 0,9 | 0,7 | 0,9 | 7,8 | 8,36 |
При полном совпадении мнений экспертов дисперсия имеет максимальное значение:
Критерий согласованности экспертов представляется в виде отношения:
,Ответ: Выбран кандидат №5, имеющий минимальный ранг.
Мнение экспертов согласовано не очень хорошо (лишь на 30%).
Задача №7
Метод экстраполяции динамического ряда.
Задание:
Установить параметры линейной однофакторной модели расчета потребности в трудовых ресурсах, которые потребуются при росте использования оборудования за установленный период времени до 90% его мощности.
Исходные данные (вариант 7):
Временной ряд роста численности обслуживающего персонала установленного оборудования:
t1 = 2 | t9 = 25 |
t2 = 6 | t10 = 27 |
t3 = 10 | t11 = 29 |
t4 = 12 | t12 = 30 |
t5 = 13 | t13 = 34 |
t6 = 17 | t14 = 35 |
t7 = 21 | t15 = 38 |
t8 = 22 |
Решение:
Экстраполяция динамического ряда производится по уравнению прямой:
y = a + bt,
где y – необходимое количество рабочих;
t – порядковый номер динамического ряда;
a, b – параметры уравнения.
Задача состоит в определении уровня динамического ряда за пределами взятого базисного периода через определение значений параметров уравнения (a, b). Базисный период принимается по исходным данным, tбаз = 15.
Параметры модели определяются из соотношений:
; ; ; ,где N – число мест базисного периода, N = 15.
Таблица 1 - Характеристики для расчета параметров линейной модели прогноза численности трудовых ресурсов