Смекни!
smekni.com

Межотраслевой баланс производства и распределения продукции отраслей материального производства (стр. 1 из 2)

Министерство образования и науки РФ

ГОУ ВПО «Кемеровский государственный университет»

Экономический факультет

Кафедра маркетинга

Контрольная работа

По дисциплине: Экономико-математические методы и модели

На тему: Межотраслевой баланс производства и распределения продукции отраслей материального производства

Научный руководитель: Лысенко Елена Александровна

Работу выполнил: студент 4 курса, группы Э-051

Багдасарян Армен Жирайрович

Кемерово 2008

Экономика условно разделена на четыре сектора (А, Б, В и Г).

Таблица 1. Коэффициенты прямых материальных затрат

0.11 0.10 0.06 0.15
0.05 0.00 0.04 0.12
0.15 0.05 0.04 0.07
0.15 0.07 0.07 0.05

Таблица 2. Объемы конечной продукции

Отрасли экономики
А Б В Г
350 300 250 200

Таблица 3. Цены на продукцию отраслей

Отрасли экономики
А Б В Г
5 15 5 10

Таблица 4. Изменение удельной условно-чистой продукции, %

Отрасли экономики
А Б В Г
- 10 -15 -

1.Обозначим черезXi; (i=l, n) валовую продукцию i-ой отрасли.

Введем в рассмотрениеxij, (i=l, n), которое выражает количество продукции i-ой отрасли необходимое для производства продукции j-ой отрасли. Хij, (i=1, n) еще называют производственно-эксплуатационными нуждами отраслей, а также межотраслевыми поставками.

Обозначим черезYj, (i=l, n) конечную продукцию i-ой отрасли.

Наконец, обозначим черезZj, (j=l, n) условно чистую продукцию j-ой отрасли.

В данной задаче система уравнений будет иметь вид:


X1 = 0.07x1 + 0.10x2 + 0.00x3 + 0.15x4 + 350

X2 = 0.03x1 + 0.03x2 + 0.04x3 + 0.12x4 + 250

X3 = 0.15x1 + 0.05x2 + 0.04x3 + 0.07x4 + 200

X4 = 0.10x1 + 0.07x2 + 0.10x3 + 0.05x4 + 150

Решение может быть найдено как с помощью точных (прямых) методов, так и с помощью приближенных (итерационных) методов.

Прямые методы позволяют найти точное решение за конечное число шагов.

Итерационные методы теоретически также позволяют найти точное решение, но при этом число шагов будет бесконечным.

Приближенными методами решения данной системы уравнений являются метод простой итерации и метод Зейделя, позволяющие найти приближенный ответ с определенной точностью. Процесс вычислений продолжается до тех пор, пока не будет выполнено условие:

| Xj(k)- Xj(k-1) |

е, (i = l,n)

Результаты вычислений приведены в следующих таблицах:

Метод простой итерации

e 0,0001 0,001 0,01 0.1 1
X1 534,704 534,704 534,704 534,704 534,704
X2 696,226 696,226 696,226 696,226 696,226
Хз 337,313 337,313 337,313 337,313 337,313
X4 396,857 396,857 396,857 396,857 396,857
Количество итераций 14 12 10 8 6

Метод Зейделя

Процесс вычисления в методе Зейделя продолжается до тех пор, пока не будут выполнены те же условия, что и в методе простой итерации.

Надо заметить, что метод Зейделя сходится к точному решению быстрее, чем метод простой итерации. Метод Зейделя

e 0,0001 0,001 0,01 0.1 1
X1 534,704 534,704 534,704 534,704 534,704
X2 696,226 696,226 696,226 696,226 696,226
Х3 337,313 337,313 337,313 337,313 337,313
X4 396,857 396,857 396,857 396,857 396,857
Количество итераций 11 9 8 6 5

На графике показана зависимость количества итераций от точности решения и применяемого метода.

Исследование числа итераций метод простой итерации -метод Зейделя

2. При рассмотрении межотраслевого баланса с использованием натуральных единиц измерения мы приходим к натуральному межотраслевому балансу. Он имеет следующий вид:

Xj=Σxij + Zi, j = l,n;

Xi=Σxij + Yi, i=l,n;

xij=aij*Xj, i,j=1,n

Найдем производственно-эксплуатационные нужды отраслей при заданных прямых материальных затратах и объемах валовой продукции.


a11x1+ a12x2 + a13x3+a14x4

a21x1+ a22x2 + a23x3+a24x4

a31x1+ a32x2 + a33x3+a34x4

a41x1+ a42x2 + a43x3+a44x4


0,11*534,704 0,10*696,226 0,06*337,313 0,15*369,857 58,869,62 20,2455,48

0,05*534,7040,00*696,2260,04*337,3130,12*369,857 26,73013,4944,38


0,15*534,7040,05*696,2260,04*337,3130,07*369,857 80,234,813,4925,89

0,15*534,704 0,07*696,226 0,07*337,313 0,05*369,857 80,2 48,7423,6118,49

Натуральный межотраслевой баланс

Отрасли А Б В Г Σ Y X
А 58,8 69,62 20,24 55,48 102,7 350,01 452,708
Б 13,58 9,51 12,58 31,44 67.И 250,01 317,127
В 67,91 15,85 12,58 18,34 114,68 200.02 314,693
Г 45,27 22,19 31,46 13,1 112,02 150,02 262,041
Σ 158,45 79,26 56,62 102,18 396,51
Z 294,26 237,86 258,07 159,86
X 452,708 317,127 314,693 262,041

В сводном материальном балансе все показатели даются в денежном или стоимостном выражении. При этом каждый продукт оценивается по единой цене независимо от того, где он используется. Это главное условие сводного материального баланса.

Для того, чтобы перейти от натурального баланса к стоимостному умножим каждое уравнение межотраслевого баланса на соответствующую цену продукции отрасли.


Получаем:

Хi*Рi= Σаij,*Хj*Рi+Yi*Рi, i = l,n;

Обозначим через:

Xi = Xi* Рi-стоимостное выражение валовой продукции i-oй отрасли;

Yi= Yi* Pi- стоимостное выражение конечной продукции;

Подставим:

Xi= Σaij* Xj * (Pj/Pj)* Pi+ Yi, i=l,n;

Xi= Σaij*Xj + Yi ;i=l,n;

Коэффициенты сводного материального баланса величины ajj, равны одноименному коэффициенту натурального баланса умноженному на отношение цены затрачиваемого продукта к цене производимого продукта. Это отношение называется индексом относительной ценности двух продуктов. Оно показывает во сколько раз единица затрачиваемого продукта дороже единицы производимого продукта.

Xi = Σxj + Zj;j=1,n.

При этом Zj = Zjтак как натуральные единицы измерения равны стоимостным.

Найдем производственно - эксплуатационные нужды для сводного материального баланса:

Xij = Xij*Pi, i = l,n;


XllPl+ X12P1+ X13Pl+ X14P

X21P2+ X22P2+ X23P2+ X24P2

X31P3 + X32P3+ X33P3 + X34P3

X4lP4+ X42P4+ X43P4+ X44P4


31,69*5 31,71*5 0*5 39,3*5

13,58*15 9,51*15 12,58*15 31,44*1

67,91*5 15,85*5 12,58*5 18,34*5

45,27*10 22,19*10 31,46*10 13,1*10


158.45 158,55 0 196,5

203,7 142,65188,7 471,6

339,55 79,25 62,9 91,7

452,7 221,9 314,6 131

Найдем стоимость валовой продукции (Xj)

Xi= Xi*P;

452,708*5 2263,54

317,127*154756,90

Xi=314,693*5 1573,46

262,041*102620,41

Найдем стоимость конечной продукции (Yi):

Yi= Yi*Pi


350*5 1750

Yi = 250*15 3750

200*5 1000

150*10 1500

На основе выше найденных данных таблица свободного материального баланса будет иметь следующий вид:

Отрасль А Б В Г Σ Y X
А 158.45 158.55 0 196.5 513.5 1750 2263.54
Б 203.7 142.65 188.7 471.6 1006.65 3750 4756.90
В 339.55 79.25 69.2 91.7 573.4 1000 1573.46
Г 452.7 221.9 314.6 131 1120.2 1500 2620.41
Σ 1154.4 602.35 566.2 890.8 3213.75
Z 1471.29 3568 1290.36 1598.61
X 2263.54 4756.90 1573. 46 2620.41

3.Коэффициентыbij- элементы матрицы В и могут быть определены через коэффициенты прямых материальных затрат (аij), т.к.

В = [Еn-А]‾ 1

Для определения матрицы В обозначим[Еn - А] = С,тогдаС*В = Еn

Значит, по правилам умножения (строка на столбец) матриц, получим:

i=l,n; k=l,n;

Получаем n систем уравнений, в каждом из которых п уравнений. Первая система позволяет найти компоненты первого столбца матрицы В, вторая - второго и т.д.