Смекни!
smekni.com

Математична модель транспортної системи підприємства (стр. 5 из 16)

Узагальнена задача про транспортний потік мінімальної вартості на мережі G (V, Е) може бути сформульована як задача лінійного програмування такого виду:

де vs - чистий вхідної потік у s, а vt- чистий вихідний потік із t.

Для рішення задач оптимізації транспортних потоків останнім часом розроблена так називана теорія мережного програмування -інтенсивно що розвивається область математичного програмування [22].

Мережне програмування значно розширило межа рішення великомасштабних оптимізаційних транспортних задач. Спеціально розроблені мережні алгоритми дозволяють вирішувати задача значно швидше, чим самі зроблені універсальні методи математичного програмування. Нові мережні алгоритми явилися подальшим розвитком прямого симплекс-методу для рішення задач лінійного програмування.

У нових методах істотно враховується особливість структури мережних задач (структури матриці обмежень і структури базису). Перестановкою рядків і стовпчиків матриця базису може бути подана в блочно-діагональному виді. Кожний із блоків має або трикутний вид, або близький до трикутного, і базису може бути поставлене у відповідність квазідерево (дерево з додатковою дугою), для операцій на який можна використовувати ефективні спискові процедури.

Крім цього, при реалізації алгоритмів на ЕОМ використаний великий досвід програмування мережних задач, що дозволив знайти зроблену технологію збереження, розміщення, пошуку і зміни даних.

Все це дозволило істотно зробити процес обчислень дешевшим за рахунок скорочення часу обчислення й обсягу використовуваної пам'яті ЕОМ.

Мережні алгоритми виявилися також дуже ефективними і для рішення таких окремих випадків задач про транспортні потоки на мережі G (V, Е), як задача про призначення і транспортна.

Був проведений обчислювальний експеримент, у процесі якого дорівнювалася стандартна програма рішення задачі лінійного програмування AРЕХ-III із мережними програмами на ЕОМ СDС CYВЕR-74 [23].

Результати експерименту за рішенням задачі про призначення, транспортної задачі, задача про потік мінімальної вартості й узагальненої задачі про потік приведені в табл. 4.

Таблиця 4 -задача про потік мінімальної вартості й узагальненої задачі про потік

Тип задачі Кіл-ть рівнянь Кіл-ть змінних Линійне програмування Мережеві методы
Час рішення, с Вартість, $ Час рішення, с Вартість, $
Задача про призначення 400400 15002250 231,85336,37 41,7360,55 1,161,34 0,210,24
Транспортна задача 200200200 135015002000 105,68124,53164,94 19,0222,4229,69 0,941,071,21 0,170,190,22
Задача про поток мінімальной вартості 4001000 13062900 174,83833,63 31,47150,05 1,515,28 0,270,95
Узагальнена задача 1001001002502505001000 1000100010004000400050006000 62,6562,6594,72453,02742,611044,34*1633,64** 11,2814,5717,0581,54133,67186,98*294,06** 7,517,299,7016,6514,7422,5550,22 1,351,311,753,002,654,069,04

2.3 Багатопродуктові потоки

Розглядалися до цих пір задачах транспортні потоки різноманітних видів (наприклад, що відповідають різноманітним типам транспортних засобів або різних вантажів) оптимізувати незалежно друг від друга або були зведені до деякого однорідного транспортного потоку. Більш загальною задачею є оптимізація сукупності транспортних потоків декількох видів з урахуванням наявності обмежень на загальну пропускну спроможність ланок транспортної мережі. Ця задача може бути сформульована у виді так називаної «задачі про багатопродуктовий потік» на мережі G (V, Е), що є задачею лінійного програмування спеціального виду.

Розмір потоку k-го продукту по дузі (i,j)

Е визначимо через,
а вартість переміщення одиниці k-го продукту по дузі (i, j) - через
(k = 1,2,...,K).

Кожний із продуктів k має одне джерело

V і один стік
V, причому попит k-го продукту
у рядку
дорівнює пропозиції цього ж продукту в джерелі
.

Задача про багатопродуктовий потік мінімальної вартості складається в тому, щоб знайти такі значення

(i,j)
Е, k = 1, 2,…К щоб

2.4 Задача планування перевезень як задача оптимізації взаємозалежних потоків на мережі

Як уже відзначалося вище, одним із найбільше характерних прикладів області додатка задач про взаємозалежні потоки є планування перевезень, при котрому необхідно оптимізувати декілька взаємозалежних потоків на транспортній мережі: потік вантажів, що доставляються від постачальників до споживачів, потік контейнерів (або тари), у яких знаходяться вантажі, потік транспортних засобів, що перевозять вантажі або контейнери, і потік локомотивів або буксирів, що переміщають транспортні засоби, якщо вони не є самохідними.

У загальному випадку ці потоки не збігаються один з одним: як правило вони зароджуються і поглинаються в різноманітних вузлах транспортної мережі, при цьому деякі з них можуть існувати лише на визначених ділянках, що наприклад відповідають різноманітним видам транспорту.

Незважаючи на те що існування взаємозалежних потоків на транспортній мережі є об'єктивною реальністю, цей факт не найшов явного відображення у відомих математичних моделях перевезень. У роботах, присвячених цій проблемі, або оптимізується один із потоків, або різноманітні потоки прямо або побічно відображається один з одним. У більшості робіт (наприклад, [12 - 17]) розглядається окремий випадок, коли потоки вантажів зафіксована і задача планування перевезень зводитися до задачі оптимального розподілення транспортних засобів по напрямках перевезень. У роботі [24], навпаки, розглядається задача оптимального розподілу потоків вантажів по транспортних мережах різноманітних видів транспорту без урахування переміщень транспортних засобів.

У ряді робіт (наприклад, [14 - 17]) розглядаються більш загальні задачі, у яких наявність потоку вантажів враховується непрямою уявою шляхом виділення потоків навантажених і порожніх транспортних засобів.

Постановка задачі оптимізації потоків на транспортній мережі, що у явному виді враховує наявність взаємозв'язку між потоками, запропонована в [18]. Проблема оптимізації взаємозалежних транспортних потоків розглянута на прикладі задача оптимізації двох основних потоків на транспортній мережі: потоку вантажів і потоку транспортних засобів, що є окремим випадком задачі (5) - (11).

Сформульована в [18] задача оптимізації двох взаємозалежних потоків на мережі полягає в такому.

Задано спрямованого графа без петель G (K, А), де K - множина вершин, А - множина дуг, що складається з

підграфів
пов'язаних загальними вершинами
.

По дугах графа можуть протікати два роди потоків: первинний і вторинний (рис. 2.1), що можна інтерпретувати, наприклад, як потік ресурсів і потік продукції, для виробництва якої вони використовуються, потік транспортних засобів і потік перевезених ними вантажів, потік рідини і потік домішок, що утримуються в ній, потік носіїв інформації і потік переданої на