Смекни!
smekni.com

Математична модель транспортної системи підприємства (стр. 3 из 16)

На основних видах транспорту, крім трубопровідного, транспортний процес має дискретний характер, тобто визначена кількість вантажів (пасажирів) і рухливого складу відправляються в окремі моменти часу.

У тих випадках, коли розмір періоду планування значно перевищує тривалості - транспортних операцій, можна не враховувати позицію кожного що переміщається об'єкта в окремі моменти часу і перейти до розгляду деякого стаціонарного безупинного транспортного потоку.

При оперативному плануванні і регулюванні тривалість транспортних операцій стає порівнянної з періодом планування і регулювання, і необхідно розглядати динамічні потоки вантажів, пасажирів і транспортних засобів.

Всі транспортні потоки, що існують на транспортній мережі, діляться на декілька основних груп: потоки вантажів, потоки контейнерів, у яких знаходяться вантажі, потоки транспортних засобів, пасажиропотоки і т.д.

На залізничному транспорті існують такі потоки:

- вантажів;

- пасажирів;

- вагонів, що обслуговують перевезення вантажу на всьому протязі залізничної частини перевезення до перевалювання на інший вид транспорту (за винятком залізничного порома) або пункту розаантаження;

- локомотивів, що можуть змінюватися й у середині залізничного етапу перевезення в зв'язку з переформуванням вантажних поїздів, переходом поїзда на ділянку з іншим видом тяги, на пар і т.д.;

- контейнерів, шлях проходження яких при прямих і змішаних перевезеннях (без розвантаження з контейнерів або навантаження в них у проміжних пунктах) збігається з потоком вантажів. Проте на відміну від вантажу контейнери повинні бути відправлені обернуті з іншим вантажем або порожняком. Це ставиться і до інших видів тари, що підлягає поверненню, а також до контейнерів.

На водяному транспорті існують потоки вантажів, контейнерів, пасажирів, самохідних барж, несамохідних барж і буксирів.

На автомобільному і повітряному транспорті існують потоки автомобілів і літальних апаратів, контейнерів і вантажів.

На трубопровідному транспорті існує поки тільки потік вантажів, але з упровадженням пневматичних і інших трубопроводів поряд із потоком вантажів буде існувати і потік тари.

Кожний із цих потоків може бути, у свою чергу, розділений на підгрупи відповідно до роду вантажу, типом транспортних засобів і т.п.

Слід зазначити, що потоки, що існують на транспортній мережі, не є незалежними, а тісно пов'язані між собою. Очевидно, наприклад, що для існування вантажопотоку або пасажиропотоку в якій ланки транспортної мережі необхідно, щоб по ньому протікав також потік транспортних засобів.


РОЗДІЛ 2. Транспортні потоки, планування та оптимізація

2.1 Задачі планування незалежних транспортних потоків

Однієї з поширених практичних задач, що зводяться до оптимізації незалежних транспортних потоків, є пошук максимального транспортного потоку з пункту його зародження в пункт поглинання, наприклад визначення максимального потоку вантажів, що може бути перевезений із пункту відправлення в пункт призначення по транспортній мережі з обмеженою пропускною спроможністю.

Ця задача формулюється в такий спосіб.

Задано транспортну мережу G (V, Е), у якій п = |V| - число вершин, а т =| Е| - число дуг. Кожній дузі (i,j)

Е поставлено у відповідність невід’ємне число
, називане її пропускною спроможністю і відповідною максимальною кількістю одиниць транспортного потоку, що може пройти по дузі.

Вершина s та V, із якої починається переміщення однорідного потоку, називається джерелом, а вершина t

V, у якій воно закінчується, - стоком.

Шляхом із s и t в G (V, Е) називається послідовність вершин і дуг, така, що

s ≡ i1;(i1, i2); i2; (i2i3),…,(in-1,in);in≡t...

Однорідним транспортним потоком у мережі G (V, Е) називається множина чисел xij, таких, що

j ≠ s,t


Кількість потоку, що виходять із джерела або входять у стік,

Під задачею про максимальний потік розуміється задача пошуку в G (V, Е) потоку максимального розміру v, що протікає з s у t.

Існує багато різноманітних алгоритмів пошуку максимального потоку. Найбільше поширені з них перераховані в табл. 1 із указівкою джерела й оцінки числа операцій. Уявлення про тривалість обчислень можна одержати з табл..2 [10]

Таблиця.1-Алгоритми пошуку максимального потоку

Автор алгоритму Помилка в загальному випадку m=n m=n2 k=m+n
Форд-ФалкенсонЭдмонс-КарпДиницКарзановЧеркаськийГалил [4][5][6][7][8][9] 0(vm)0(
)0(
)0(
)0(
)0(
)
0(
)0(
)0(
)0(
)0(
)
0(
)0(
)0(
)0(
)0(
)
0(
)0(
)0(
)0(
)0(
)

Таблиця.2-Тривалість обчислень

Число вершин Числодуг Алгоритм Форда-Фалкенсона, модифікація Эдмонса-Карпа, c Алгоритм Диница, c Алгоритм Карзанова, c Алгоритм Черкаського, c
1002003004005006007008009001000 500100015002000250030003500400045005000 17,068,3154,7285,1------ 4,29,614,320,024,941,041,746,757,354,5 5,311,817,724,830,048,050,959,669,766,9 2,77,49,414,722,714,124,534,538,443,5

Більш загальною задачею оптимізації однорідного транспортного потоку є задача пошуку такого потоку на транспортній мережі, витрати на переміщення якого є мінімальними. До задачі подібного роду зводяться, наприклад, задача визначення обсягів і шляхів доставки вантажів із пунктів відправлення в пункти призначення, що забезпечують мінімум транспортних витрат, а також задача визначення маршрутів прямування і кількості, використовуваних транспортних засобів, при яких загальні експлуатаційні витрати на одну перевізку вантажів мінімальні.

Відмінність даної задачі від попередньої полягає в тому, що для кожної дуги (i,j)

Е задана вартість
переміщення одиниці транспортного потоку і необхідно знайти потік заданого розміру v із джерела s у стік t, що мінімізує зважену суму потоків

Для рішення цієї задачі запропонована множина різноманітних алгоритмів і їхніх узагальнень. Серед. них алгоритми, засновані на застосуванні прямих і двоїстих симплекс-алгоритмів лінійного програмування й алгоритмів пошуку найкоротших шляхів. Одним із поширених алгоритмів є так називаний алгоритм дефекту [4], що дозволяє вирішувати задач про потік мінімальної вартості достатньо загального виду. Число операцій алгоритму дефекту оцінюється як 0(

), де число К0, обумовлене на перших ітераціях алгоритму, не перевищує
, п - число вершин мережі, т - число її дуг, а

Очевидно, можна замість 0(

) використовувати оцінку 0(
). У [5] запропонована модифікація алгоритму дефекту з оцінкою числа операцій 0 (
).

Алгоритми пошуку потоку мінімальної вартості застосовуються для рішення задач у дуже великих мережах. У роботах [11, 12] повідомляється про рішення прямими алгоритмами задач із 20000 вершин 450 000 дуг, а в [13] - про рішення однієї задачі з 3000 вершин і 35 000 дуг за 97 с на IВМ-360/67 і іншої задачі з 5000 вершин та 15 000 дуг за 113 с.

Пошук найкоротших шляхів. Окремими випадками задачі про транспортний потік мінімальної вартості, що подають і самостійний інтерес, є задача перебування найкоротшого шляху між двома пунктами транспортної сети G (V, Е) і задача пошуку маршруту, що забезпечує мінімальний час переміщення транспортного потоку. Довжиною шляху є сума довжин дуг, що входять у нього.