Смекни!
smekni.com

Математична модель транспортної системи підприємства (стр. 15 из 16)

FLOAT Org,Org

if (~_Value!= ~Value)

logmessage(String(~Value))

rez:=SetControlText2d(~HSpace,~HObject,String(~Value))

_Value:= ~Value

exit()

endif

if (msg==WM_CONTROLNOTIFY)

if (wNotifyCode==768)

str:=GetControlText2d(HSpace,HObject)

Value:= Float(~str)

if (String(~Value)!=~str)

// rez:=SetControlText2d(HSpace,HObject,str)

Value:= Float(str)

endif

_Value:= ~Value

endif

exit()

endif

if (HObject == #0)

if (WindowName!= "" && (~HSpace==#0)); HSpace:= GetWindowSpace(~WindowName); endif

if (~HSpace == #0); exit(); endif

if (GetWindowProp(GetWindowName(~HSpace),"CLASSNAME")!= GetClassName(".."))

_HObject:= CreateObjectFromFile2D(~HSpace,AddSlash(GetClassDirectory(GetClassName("")))+GetClassName("")+".vdr", Org,Org,PFC_MOVEOBJECT)

endif

HObject:= GetObject2dByName(~HSpace,~_HObject,"edit")

rez:=DelGroupItem2d(~HSpace,GetObjectParent2d(~HSpace,~HObject),~HObject)

if (~HObject)

registerobject(~HSpace,~HObject,"",WM_CONTROLNOTIFY,0)

rez:=SetControlText2d(~HSpace,~HObject,String(~Value))

_Value:= ~Value

endif

endif

У свою чергу програмний модуль того ж іміджу для висновка значень Numberlend View також приобретет такий вид

SetStatusText (pos,string(value))

Загальна структура імітаційної моделі, виконана відповідно до пропозицій поділу, подана на рис.4.2.


Рис. 4.2- Загальна структура імітаційної моделі в пакеті Stratum- 2000

Основні іміджі Stratum Class, рис. 4.2., подані по вертикалі ВІДПОВІДНО до рівнів А, У,С.

З використанням запису за допомогою ідентифікаторів рівняння балансу виглядають у такий спосіб:

На рівні А, X1-X2-Y1-Y2-Y3=A1, програмний модуль у цьому випадку имеет вид

FLOAT S1,S2,P1,P2,V1,V2,A1,t

t:=1

t:=t+1

x:=1

x:=x+1

b1:=3

a:=1

P1:= -1/b1*(a*f^2)

g1:=5

V1:=g1/P1

b2:=2

f:=3

P2:= -1/b2*(a*f^2)

g2:=2

V2:=g2/P2

S1:=12

X1:=S1*P1*V1*t

S2:=30

Y1:= S2*P2*V2*t

A1:= X1+X2-Y1-Y3

У свою чергу на рівні У, за умови рівняння балансу Y3-X2+Y4-X3 програмний модуль буде мати вираз

b1:=1.5

a:=2

P1:= -1/b1*(a*x^2)

g1:=4

V1:=g1*x^3

P3:= -1/b3*(a*x^2)

b3:=2

g2:=3

V3:=g2*x^3

S1:=40

X1:=S1*P1*V1*t

S3:=23

X3:= S3*P3*V3*t

B1:=Y3-X2-X3+Y4

На останньому з рівнів -С утворюваної моделі, за умови рівнянні балансу типу X3-Y4, програмний модуль буде виглядати в такий засіб

FLOAT S1,S2,P1,P2,V1,V2,C1

b4:= 3

P4:= -1/b4*(a*x^2)

g4:=3

V4:=g4*x^3

C1:= X3-Y4

Y4:= S4*P4*V4*t

На моделі рис.4.2, позначені контактні площадки, вона служать для побудови такого рівня імітаційної моделі і здійснюють передачу перемінних на цей рівень при необхідності декількох перемінних. Отже, модель, подана на мал.1,може бути розвиті і доповнена до необхідного обсягу і рівня складності. Спроможність до розвитку і є особливістю імітаційних моделей, утворюваних у середовищі Stratum.


Рис. 4.3 Частина незалежної імітаційної моделі, рівень А

Ілюстрація роботи фрагмента імітаційної моделі,зображеного на рис.4.2, приведена на рис.4.3. а на рис.4.3, подана графічна візуалізація уявлення функцій (1,4,5), розділів., і ілюстрація залежності залишків продукції на рівні А в залежності від часу. Розглядався випадок відсутності вантажопотоків на інші рівні.


Рис. 4.4 Візуалізація результатів при роботі одночасно всієї моделі.

На рис.4.4 подана візуалізація отриманих рішень загальної моделі транспортної системи підприємства. Хибою пакета в цілому, служить відсутність ефективного автомасштабування. Тому для великих багаторівневих моделей припадає подавати результати прогону фрагментами.


Рис. 4.5 Візуалізація фрагмента результатів прогону загальної моделі

Звертає на себе увага лінійний характер зміни залишків на рівні обслуговування А,У,С и явно нелінійний характер обсягів вантажоперевезень. Це попередньо дає можливість оцінити можливість зміни залишків перевезеної продукції на складах.


Рис. 4.6 Графіки, що ілюструють роботу імітаційної моделі на однім прогоні

Модуль програми двомірного "осцилографа", службовець для візуалізації отриманих результатів призводь нижче. Модуль написаний на специфічній мові Stratum і є розробкою автора роботи.

STRING WindowName

FLOAT Height,Width

FLOAT local ret

FLOAT nosave Offset,Offset,Scale,Scale

FLOAT x,y,Control,PrintValue,PrintValue,Reset,buffer

COLORREF Color

FLOAT _enable


Установка значень змінних виконувалася у вікні, по таблиці, рис.4.7, що варіюються перемінні виділяються автоматично червоним кольором. Автоматично вказується тип змінних.

Рис. 4.7- Установка значень змінних

Після установки перемінних він ініціалізується на зазначеному модулі, для такого модуля процедура установки перемінних повторюється.

Ієрархію встановлених модулів Stratum покажемо на мал. 6. Вона характеризує місце модуля в структурній схемі верб відомій мірі послідовність обчислень приведеної моделі. У верхній частині знаходяться три іміджі Stratum Class_72, а потім OSCSpace 2D, що реалізують візуалізацію обчислень і останніми іміджі типу Numberlend.


Рис.4.8 Ієрархія спроектованої моделі

Ієрархію цілком відповідає структурі проекту.

4.3 Аналіз результатів прогону імітаційної моделі

Аналіз результатів прогону імітаційної моделі достатньо обсяжний і потребує дуже великих витрат часу і засобів. Тому зупинимося на найбільше цікавих із них, що мають можливий вплив на виробничий процес на аналізованому машинобудівному підприємстві.

У першу чергу роздивимося можливу залежність вантажопотоків на наявні або виникаючі виробничі запаси.

На рис. 4.9 подано графік залишків вантажу при наявності двох вантажопотоків, це відповідає нижньому рівню С прийнятої моделі.


Рис.4.9- Залишок вантажів на рівні С прийнятої моделі

Графік свідчить про лінійно залежність розміри залишку від х.

Т.ч. це характеризує той факт, що функція вартісного потенціалу при невеликих змінах мало впливає на накопичення запасів у прийняте моделі і не є керуючим чинником. Це говорить про те, що модель або повинна бути доповнена на іншому рівні або є нечуйним до зазначеного чинника.


Рис.4.10- Зміна залишку вантажу при статечній функції вартісного потенціалу, n=7

У цьому випадку, ми зштовхуємося із ситуацією, коли залишок різко зростає тільки при наявності достатньо великого шляху доставки вантажів. При менших шляхах його просто практично немає. Т.ч., використання імітації дозволило зазначити шляху зменшення залишків на проміжних складах.


Рис.4.11 Зміна функції вартісного потенціалу, при n=3

Графік, рис.11, характеризує зменшення складських запасів при визначеному виді вартісного потенціалу, що дозволяє зробити висновку про засіб скорочення запасів на проміжних складах.

Більш цікавим і актуальним є питання, як ростуть запаси згодом.

На рис.4.12 приведений графік залежності графік залежності залишку вантажу на рівні С від часу

.


Рис. 4.12 Графік залежності залишків вантажу від часу на рівні С

Залежність носить сугубо лінійний характер. Це свідчить про накопичення залишків протягом часу функціонування системи. Цей результат є показовим і свідчить про необхідність керування процесом доставки і відправлення вантажів. Такий висновок є закономірним, тому що "прогон" імітаційних моделей служить в основному для основи прийняття правильних управлінських рішень як виробничого так і невиробничого характеру.


ВИСНОВКИ

В роботі проаналізовано стан досліджень в галузі транспортних систем та потоків. Приведені моделі транспортних систем різного призначення.

Проаналізовано моделі систем транспорту різного використання. Розлянуто транспортні потоки, як однопродуктові так і багатопродуктові. Проаналізовані моделі потоків. Приведені засоби оптимізації, а також звісні моделі.

Розроблено математичну модель транспортної системи підприємства з використанням теорії потенціалу. При цьому було встановлено, що:

· Має місто факт залежності розміру вантажопотоку від цінового потенціалу;

· Розміру вантажопотоку

залежить від його щільності;

· Встановлено вид залежності розміру вантажопотоку

від швидкості його
;

· Встановлені вирази для обчислювання залишку вантажу на кожному з рівнів.

Спроектовано імітаційну модель транспортної системі підприємства на базі програмного пакету Stratum. На основі прогону моделі получена візуалізація, яка може бути використана при оперативному керуванні підприємством.

Встановлено характер зміни і накопичення залишків на кожному з транспортно-виробничому рівнів.

Зрівняння за фактичними значеннями залишків на рівні С показали адекватність імітаційної моделі. Відхилення не перевищували 15-20% від розрахункового значення.

Проведене зрівняння розрахункових значень залишків з фактичним показало адекватність розробленої моделі.


СПИСОК ЛІТЕРАТУРИ

1 Зельдович Я.Б., Мышкис А.Д. Элементы математической физики. Наука. М.: 2000. 351 с.

2 Джефферсон Г., Свирлс Б. Методы математической физики. М.: Мир. 2001. 311 с.

3 Шеннон Р.Ю. Имитационное моделирование систем- искусство и наука. М.: Мир, 1998. - 237с.