Алгоритм расчета параметров диффузионного факела
Расчет выполняется на участке струйного течения, ориентировочную длину которого lс в движущейся системе координат можно найти, приравняв удвоенный радиус турбулентной струи внутреннему диаметру печи Dп:
где X0-расстояние до полюса струи. В неподвижной системе координат длина участка струйного течения возрастет на величину δх.
Длину участка струйного течения в неподвижной системе координат можно также найти из условия вовлечения в движение струй всего воздуха, подаваемого в печь, массовый расход которого определен следующим равенством:
Из равенства правых частей выражения следует, что:
Коэффициент избытка воздуха αв здесь задан, а стехиометрический коэффициент можно рассчитать по известному объему воздуха V°, теоретическая необходимому для сгорания одного кубометра природного газа, и плотности воздуха при нормальных условиях
С помощью уравнений, полученных на основе теории турбулентных струи, вычисляют основные параметры диффузионного факела: длину факела; массовый расход воздуха, вовлеченного в струю; массовый расход несгоревшего топлива; энтальпию газообразной среды, усредненную по сечению струи и среднюю по сечению температуру диффузионного факела.
Для вычисления средней плотности газообразной среды
предлагается следующий итерационный алгоритм. Разделим факел по длине на достаточно малые участки, в пределах которых температуру и плотность среды можно считать постоянными. Например, удобно принять длину такого участка ∆х равной диаметру выходного отверстия горелки d0.Примем в качестве расчетного поперечное сечение факела на выходе из очередного малого участка. Температура, состав и плотность газов на входе в очередной малый участок известны как параметры в предыдущем поперечном сечении, так что, приняв эти величины в качестве расчетных, можно получить в первом приближении массу воздуха, присоединенного к струе на очередном малом участке за единицу времени:
где
- средняя плотность газов на очередном малом участке.Прибавим эту величину к массовому расходу воздуха, вовлеченного в движение струи перед очередным малым участком, и найдем его массовый расход в расчетном сечении:
Массовому расходу воздуха Gв, в уравнении соответствует средняя плотность среды на расчетном участке от горелки до расчетного сечения:
Теперь можно определить расстояние от горелки до полюса струи, расчетную длину факела, массовый расход несгоревшего топлива, энтальпию и температуру факела в расчетном сечении; а затем, не меняя значения координаты X, уточнить среднюю плотность среды на очередном малом участке.
Плотность среды на расчетном участке и температуру среды в расчетном сечении вычисляют повторно, каждый раз уточняя величину ρсp, пока не будет достигнута заданная точность результатов. После этого увеличивают координату X на приращение ∆х, равное длине очередного малого участка, и выполняют расчет параметров диффузионного факела в следующем расчетном сечении в пределах участка струйного течения.
Алгоритм расчета температуры футеровки печи
Температурное поле в поперечных сечениях футеровки печи рассчитывают по уравнениям. Так как допускается пренебрегать переносам теплоты в футеровке по длине печи и цилиндричностью стенок, то становится возможной постановка одномерной задачи в декартовой системе координат.
Рекомендуется сначала составить более простую программу расчета стационарной теплопроводности при граничных условиях первого рода на внутренней поверхности футеровки. В начале программы выполняется цикл по индексу j для вычисления координат узлов сетки:
где ∆у – расстояние между узловыми точками, определяемое по заданной толщине футеровки и выбранному числу узлов сетки:
Затем температуру на внутренней поверхности футеровки приравнивают к температуре технологического материала и задают произвольные исходные значения температуры в остальных узловых точках.
В общем итерационном цикле последовательно увеличивают на единицу номера итераций N, вычисляют коэффициент теплопроводности материала футеровки и, выполняя прямую прогонку, рассчитывают коэффициенты прогонки Рj, Sj. Затем, вычислив коэффициенты дискретного уравнения, находят температуру на наружной поверхности футеровки в соответствии с граничными условиями третьего рода. Степень черноты наружной поверхности футеровки вращающейся печи принимают равной 0,9. Выполняя обратную прогонку, находят значения температуры во внутренних узлах сетки.
Температуру в пределах программы следует выражать в кельвинах. Так как коэффициенты теплопроводности футеровки вычисляются в точках, лежащих на гранях контрольных объемов между узлами сетки, то в расчетные формулы подставляют среднеарифметические значения температуры в соседних узловых точках:
где а, b– числовые коэффициенты.
Согласно принятой здесь нумерации точек на гранях контрольных объемов, формулы для расчета коэффициентов дискретных уравнений будут представлены следующим образом:
Коэффициент теплопроводности слоя гарнисажа, образованного на внутренней поверхности футеровки застывшим клинкерным расплавом, принимают равным 1 Вт/(м•К).
В цикле обратной прогонки вычисляют в узлах сетки относительные разности значений температуры в текущей и предыдущей итерациях:
и выбирают из них максимальную разность. В конце общего итерационного цикла производят оценку сходимости итераций, сравнивая абсолютную величину
с заданным малым числом. Если | | больше чем, например, 0,00001, то итерации повторяются, если же меньше, то итерации завершаются. Чтобы повторить вновь выбор максимальной относительной разности температур, в начале каждой итерации величину устанавливают равной нулю.В конце программы предусматривают вывод на экран и на печать исходных данных и результатов расчета. При этом температуру представляют в градусах Цельсия.
Вторая программа для расчета стационарного температурного поля в футеровке должна учитывать теплообмен футеровки с диффузионным факелом и воздухом в печи, согласно граничным условиям третьего рода. С этой целью в предыдущую программу вносятся соответствующие изменения.
Коэффициенты прогонки Рj, Sjна внутренней поверхности футеровки или гарнисажа определяют теперь, предварительно вычислив коэффициенты дискретного уравнения. При этом используются значения степени черноты и поглощательной способности газообразной среды, приведенной степени черноты и коэффициента конвективной теплоотдачи, найденные при расчете параметров диффузионного факела. Температуру на внутренней поверхности футеровки или гарнисажа определяют обратной прогонкой.
Третью программу составляют для расчета нестационарного теплообмена, имея в виду, что при вращении печи температура внутренней поверхности футеровки изменяется. При контакте с технологическим материалом она равна температуре этого материала, что соответствует граничным условиям первого рода, а при нагреве диффузионным факелом зависит от условий радиационной и конвективной теплоотдачи, согласно граничным условиям третьего рода.
Для учета нестационарности в программе организуют цикл по интервалам времени, который является внешним по отношению к итерационному циклу. Цикл по интервалам времени выполняется в течение нескольких оборотов печи, так чтобы расчетное время прогрева футеровки оказалось достаточным для стабилизации изменений температурного поля в следующих друг за другом оборотах.
Чтобы задать начальное температурное поле в футеровке, целесообразно усреднить стационарные распределения температуры, полученные в двух предыдущих программах при граничных условиях первого и третьего рода. По-прежнему допускается рассматривать задачу приближенно как одномерную. Коэффициент aj, Dj дискретных уравнений рассчитывают теперь с учетом нестационарных членов.
Окружность печи делят на 16, расчетных отрезков и определяют интервал времени, необходимый для прохождения каждого отрезка расчетным сечением футеровки при вращении печи