Смекни!
smekni.com

Математическое моделирование производственной деятельности (стр. 2 из 5)

2.1 Моделирование экономических процессов

Имитационные модели, как об этом уже говорилось, воспроизводят поведение системы на протяжении некоторого промежутка времени. Это достигается путем идентификации ряда событий, распределение которых во времени дает важную информацию о поведении системы. После того как такие события определены, требуемые характеристики системы необходимо регистрировать только в моменты реализации этих событий. Информация о характеристиках системы накапливается в виде статистических данных таких наблюдений. Эта информация обновляется всякий раз при наступлении каждого из интересующих нас событий. Для построения имитационных моделей не требуется использования математических функций, явным образом связывающих те или иные переменные. Эти модели позволяют имитировать поведение сложных систем, для которых построение математических моделей и получение решений невозможно. Более того, гибкость, присущая имитационным моделям, позволяет добиться более точного представления системы. Основной недостаток имитационного моделирования заключается в том, что его реализация эквивалентна проведению множества экспериментов, а это неизбежно обусловливает наличие экспериментальных ошибок. Кроме того, сам процесс оптимизации также вызывает затруднения.

При подготовке к моделированию экономических процессов широко используются так называемые “эвристические методы” и методы экспертных оценок. Они базируются на интуитивно или эмпирически выбираемых правилах, которые позволяют улучшить уже имеющееся решение. Используются в том случае, когда соответствующие математические построения оказываются настолько сложными, что точное решение сформулированной задачи найти нельзя. По существу, эвристические методы представляют собой процедуры поиска разумного перехода от одной точки пространства решений к некоторой другой точке с целью улучшения текущего значения целевой функции модели. Когда дальнейшего приближения к оптимуму добиться невозможно, лучшее из полученных решений принимается в качестве приближенного решения оптимизационной задачи.

Модели экономических процессов разрабатываются с целью оптимизации заданной целевой функции при некоторой совокупности ограничений. Термин “оптимизация” обычно используется для обозначения процессов максимизации или минимизации целевой функции. Поэтому для одной и той же задачи можно предложить две различные модели с различными критериями оптимизации. Например, мы можем предпочесть максимизировать прибыль, или с не меньшим основанием исходить из другой целевой установки - минимизации затрат. Эти критерии не эквивалентны, так как величина затрат может быть функцией переменных, находящихся под контролем данной фирмы, тогда как величина прибыли зависит от внешних неуправляемых факторов, например от ситуации на рынке сбыта, складывающейся под влиянием конкурентов. Использование соответствующих этим критериям оптимизационных моделей при одинаковых ограничениях не обязательно приведет к получению одинаковых оптимальных решений.

Основной вывод, который следует из вышеизложенного, заключается в том, что полученное с помощью некоторой модели конкретное оптимальное решение является наилучшим только в рамках использования именно этой модели. Другими словами, оно является наилучшим из всех возможных только тогда, когда выбранный критерий оптимизации можно считать полностью адекватным целям организации, в которой возникла исследуемая проблемная ситуация. В этом контексте, обеспечение качества управления маркетингом предприятия обеспечивается точностью соответствия модели реальной системе, так как только выводы, получаемые в результате моделирования могут быть применены к реальной системе.

Любая модель экономической системы независимо от ее сложности и адекватности системе-оригиналу принесет мало пользы при отсутствии необходимой информации.

2.2 Этапы исследования экономических процессов

Работа, выполняемая в процессе исследования, состоит из следующих этапов:

1) идентификации проблемы;

2) построения модели;

3) решения поставленной задачи с помощью модели;

4) проверки адекватности модели;

5) реализации результатов исследования.

Хотя эта последовательность не обязательна, ее считают общепринятой.

За исключением этапа, связанного с получением решения на основе разработанной модели, когда используются формализованные методы (линейное программирование, управление запасами, теория массового обслуживания, календарное планирование и т.д.), все остальные этапы исследования выполняются без строгой ориентации на какие-либо регламентирующие правила.

На первом этапе задача исследования заключается в идентификации проблемы. Здесь можно выделить следующие основные стадии:

формулировка задачи или цели исследования,

выявление возможных альтернатив решения применительно к исследуемой ситуации,

определение присущих исследуемой системе требований, условий и ограничений.

Второй этап связан с построением модели. На этом этапе выбирается модель, наиболее подходящая для адекватного описания исследуемой системы. При построении такой модели должны быть установлены количественные соотношения для выражения целевой функции и ограничений в виде функций от управляемых переменных. Если разработанная модель соответствует некоторому общему классу математических моделей экономических процессов (например, моделям линейного программирования или календарного программирования), то для получения решения нужно воспользоваться известными математическими методами. Если же математические соотношения слишком сложны и не позволяют получить аналитического решения задачи, более подходящей для исследования может оказаться имитационная модель. В некоторых случаях возникает необходимость совместного использования математических, имитационных и эвристических моделей. Это все зависит от характерных особенностей и сложности исследуемой задачи.

На третьем этапе осуществляется решение сформулированной задачи. При использовании математической модели решение получают с помощью апробированных оптимизационных методов; при этом модель приводит к оптимальному решению задачи. В случае применения имитационных или эвристических моделей понятие оптимальности становится менее определенным и получаемое решение соответствует лишь приближенным оценкам критериев оптимальности функционирования экономической системы.

На данном этапе кроме нахождения решения всякий раз, когда это возможно, должно быть обеспечено также получение дополнительной информации о возможных изменениях решения при изменение параметров системы. Эту часть исследования называют анализом модели на чувствительность. Он необходим, например, в тех случаях, когда некоторые характеристики исследуемой системы не поддаются точной оценке. В такой ситуации весьма важно исследовать возможные изменения оптимального решения в зависимости от соответствующих параметров системы в некоторых интервалах их количественных значений.

Четвертый этап заключается в проверке адекватности модели. Модель можно считать адекватной, если, несмотря на некоторые неточности отображения системы-оригинала, она способна обеспечить достаточно надежное предсказание поведения системы. Общий метод проверки адекватности модели состоит в сопоставлении получаемых результатов с характеристиками системы. Если при аналогичных входных параметрах модель достаточно точно воспроизводит поведение системы-оригинала, то она считается адекватной. Однако такое сопоставление не дает полной уверенности в том, что поведение системы в предстоящем периоде будет таким же, как в прошлом. А поскольку построение модели осуществляется с использованием ретроспективных данных, то благоприятный исход такого сравнения во многом предопределен. В отдельных случаях, когда система-оригинал исследуется с помощью математической модели, допустима параллельная разработка имитационной модели, предназначенной для проверки основной математической модели.

Заключительный пятый этап связан с реализацией полученных результатов. На данном этапе необходимо оформить конечные результаты исследования в виде детальных инструкций, которые должны быть составлены таким образом, чтобы они легко воспринимались лицами, ответственными за управление экономической системой (службой) и обеспечение ее функционирования.

В основе моделирования экономического процесса лежит работающая модель, копирующая текущую деятельность промышленного предприятия. Это достигается путем прохождения через возможные события в режиме сжатого времени с одновременным отображением хозяйственной деятельности в цифрах. Так как программное обеспечение, реализующее имитационную модель бизнес-процессов, отслеживает статистические параметры ее элементов, оценка эффективности процесса и обеспечение качества управления может быть получена только на основе анализа соответствующих выходных данных.

Составление бюджета продаж услуг должно происходить параллельно с выбором производственной программы предприятия. Только в этом случае можно получить наиболее реальный объем продаж услуг, учитывающий совокупность следующих показателей:

прогнозируемый спрос клиентов;

производственные мощности с учетом остановок производства;

предложение смежников.

Порядок организации и выполнения работ по планированию производства внутри подразделений, включая распределение составляющих услуги, кроме организующих управленческих воздействий содержит достаточно сложный и трудоемкий расчет. Это диктует необходимость разработки программного обеспечения для принятия объективных решений в области управления производственным процессом предприятия.