b= Υ·x - Υ· x =(100,7916-1,796*56,22)/41,34=-0,0043
σ²xА=Υ-В * х=1,796+0,0043*56,22=2,0378
Получено линейное уравнение : Ỹ=2,0378-0,0043* х далее, исходя из этого уравнения произведем потенцирование и запишем его в обычной форме
2,0378 -0,0043 * х х
ŷ
=10 *10 =109,1*0,9947,1
ŷ1=109,1*0,99 =67,96
59,2
ŷ2=109,1*0,99 =60,18
50,2
ŷ3=109,1*0,99 =65,87
63,8
ŷ4=109,1*0,99 =57,45
60,8
ŷ5=109,1*0,99 =59,22
рассчитаем Аi
l (yi-ỹхi) А= n ∑ Аi = уi ∙100%А1=4,84/72,8*100%=6,65%
А2=3,02/63,2*100%=4,77%
А3= 3,97/61,9*100%=6,41%
А4=1,25/58,7*100%=2, 12%
А5=|2,22/57,0*100%=3,89%
Аi=4,77%
Тесноту связи оцениваем через индекс корреляции:
ρxy=√ l-(∑(yi-ŷх) ² ∕ (∑(y-yср)²=√l-10,95/30,2776=0,8
Связь умеренная, но немного хуже чем в предыдущем случае.
Коэффициент детерминации : r²xy=(Pxy)²=(0,8)²=0,64.
Аi=4,77%. Показательная функция чуть хуже, чем степенная- она описывает изучаемую зависимость.
РЕГРЕССИВНАЯ МОДЕЛЬ РАВНОСТОРОННЕЙ ГИПЕРБОЛЫ.
1
Уравнение равносторонней гиперболы у=а+b х линеаризуется при замене1
Z= х , тогда уравнение равносторонней гиперболы принимает следующий вид: у=а+b*zТабл.№5
№ п/п | Y | X | YX | Y² | X² | ŷx | yi-ŷx | (yi-ŷx)² | Ai |
1 | 72,8 | 0,021 | 1,52 | 0,000441 | 5299,84 | 67,63 | 5,17 | 26,72 | 7,1 |
2 | 63,2 | 0,017 | 1,07 | 0,000289 | 3994,24 | 61,85 | 1,35 | 1,82 | 2,14 |
3 | 61,9 | 0,019 | 1,17 | 0,000361 | 3831,61 | 64,74 | -2,84 | 8,06 | 4,58 |
4 | 58,7 | 0,015 | 0,88 | 0,000225 | 3445,69 | 58,95 | -0,25 | 0,06 | 0,42 |
5 | 57,0 | 0,016 | 0,91 | 0,000256 | 3249 | 60,40 | -3,4 | 11,56 | 5,96 |
Итого | 313,6 | 0,009 | 5,55 | 0,001572 | 19820,38 | 313,6 | 0,03 | 48,22 | 20,2 |
Средзнач | 62,72 | 0,018 | 1,11 | 0,000314 | 3964,076 | 9,644 | 4,04 | ||
σ | 5,5 | 0,0021 | |||||||
σ² | 30,28 | 0,00000424 |
1
σy²= n ∑( yi– y )²= 3964,076 - 62,72²=30,2776σ²z= 0,000314 – 0,0176²=0,00000424
значения параметров регрессии а и b составили:
b= y·z - y · z =(1,11-62,72*0,0176)/0,00000424 = 1445,28 σ²z а=y - b * z = 62,72-1445,28*0,0176=37,28, получено уравнениеŷ=37,28+1445,28* z
ŷ1=37,28+1445,28*0,021=67,63
ŷ2=37,28=1445,28*0,017=61,85
ŷ3=37,28=1445,28*0,019=64,74
ŷ4=37,28=1445,28*0,015=58,95
ŷ5=37,28=1445,28*0,016=60,40
Индекс корреляции: ρxy=√ l-(∑(yi-ŷх) ² ∕ (∑(y-yср)²=√l-9,644/30,2776=0,8256
Связь тесная, но хуже чем в предыдущих моделях.
r²xy=(Pxy)²=(0,82)²=0,6816
P²xy n-m-l 0,6816 0,6561
Fфакт= l-P²xy * m = l- 0,6816 *3 = 0,3184 *3 =6,18Т.к Fтабл.α=0,05=10,13 следовательно Fфакт<Fтаблотсюда следует, что гипотеза Но принимается. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.
ЗАКЛЮЧЕНИЕ
В заключении проанализируем полученные в курсовой работе результаты исследований и выберем рабочую модель.
Экономический анализ моделей, по результатам исследования получил следующие значения:
Коэффициент парной корреляции rxy= 0,79 у линейной модели;
Индекса корреляции Pxy =0,81 у степенной модели;
Индекса корреляции Pxy =0,80 у показательной модели;
Индекса корреляции Pxy =0,82 у модели равносторонней гиперболы.
Данные индексы показывают, что связь у(х) (среднесуточная производительность труда от стоимости основных производственных фондов) прямая, тесная, высокая.
С экономической точки зрения, все модели достаточно хороши, т.е у всех моделей при увеличении расходов на подготовку и освоение производства – производительность труда увеличивается. Это значит что на данных предприятиях есть резервы для расширения производства, резервы для введения новых технологий с целью увеличения прибыли.
Руководствуясь целью курсовой работы можно сделать вывод, что из всех рассмотренных моделей линейная модель лучше всех отражает экономический смысл. А теперь сравним регрессивные модели по средней ошибке аппроксимации А ,которая показывает, на сколько фактические значения отличаются от теоретических рассчитанных по уравнению регрессии т.е у и ŷx:У линейной модели А1=4,7%;
У степенной модели А2=4,62%;У показательной модели А3=4,77%;
У равносторонней гиперболы А4=4,04%.Средняя ошибка аппроксимации А1, А2, А3, А4 находятся в допустимом пределе.
Вывод: чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным (лучшее качество модели). По расчетным данным моей работы показательная модель имеет лучшее качество. Сравнивая регрессивные модели по коэффициенту детерминации r²xy линейной, степенной. Показательной и равносторонней гиперболы видим, что статистические характеристики модели равносторонней гиперболы превосходят аналогичные характеристика других моделей, а именно : коэффициент детерминации у линейной модели равен 0,62; у степенной 0,6561; у показательной 0,64 и у равносторонней гиперболы 0,6816. Это означает, что факторы, вошедшие в модель равносторонней гиперболы. Объясняют изменение производительности труда на 68,16%, тогда как факторы, вошедшие в линейную модель на 62%, в показательную на 64% и в степенную на 65,61%, следовательно, значения, полученные с помощью коэффициента детерминации модели равносторонней гиперболы более близки к фактическим. На основании этого, модель равносторонней гиперболы выбирается за рабочую модель в данном примере.
Список используемой литературы:
1) А.М.Беренская – Курс лекций по теме «Математическое моделирование»
2) М.Ш.Кремер –«Исследование операций в эконометрике»
3) И.И.Елисеева - «Практикум по эконометрике»
4) И.И.Елисеева - «Эконометрика»