∑(у-у)²= ∑(ỹх-у)² + ∑(у-ỹх)²,
где ∑(у-у)² общая сумма квадратов отклонений;
∑(ỹх-у)² сумма квадратов отклонений, обусловленная регрессией
∑(у-ỹх)² остаточная сумма квадратов отклонений.
Долю дисперсии , объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R²:
∑(ỹx-y)²R²= ∑(y-y)²
Коэффициент детерминации- квадрат коэффициента или индекса корреляции.
F-mecm-оценивание качества уровнения регрессии- состоит в проверке гипотезы Ноо статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического
Fфакт и критического (табличного) Fтабл значений Fкритерия Фишера. Fфакт-
определяется из соотношения значений факторной и остаточной дисперсией, рассчитанных на одну степень свободы:
∑(ỹx-y)²/mr²xy
Fфакт== (n-2)∑(y-ỹ)²/(n-m-1) 1-r²xy
n- число едениц совокупности;
m- число параметров при переменных х.
Fтабл- это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а
Уровень значимости а вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.
Если Fтабл< Fфакт то Но – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт , то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
УСЛОВИЕ
По пяти городам известны значения 2х признаков: табл.№1
город | Средний доход сельхоз-хозяйств в % | Средний прирост КРС |
Красноярск | 72,8 | 47,1 |
Брянск | 63,2 | 59,2 |
Армавир | 61,9 | 50,2 |
Ростов | 58,7 | 63,8 |
Киев | 57,0 | 60,8 |
Требуется:
1) для характеристики зависимости у от х рассчитать параметры следующих функций (линейной, степенной, показательной, равносторонней гиперболы).
2) оценить каждую модель через среднюю ошибку аппроксимации А и F- критерии Фишера.
ЛИНЕЙНАЯ РЕГРЕССИВНАЯ МОДЕЛЬ
Для расчета параметров а и b линейной регрессии у=а+b∙x ,решаем систему нормальных уравнений относительно а и b:
n∙a+b∙∑x=∑y
yx- y∙x
a∙∑x+b∙∑x²=∑y∙x получаем b= σ²xтабл.№2
№п/п | у | х | ух | x² | y² | ŷx | у – ŷx | Аi |
1 | 72,8 | 47,1 | 3428,88 | 2218,41 | 5299,84 | 68,87 | 3,93 | 5,30 |
2 | 63,2 | 59,2 | 3741,44 | 3504,64 | 3994,24 | 60,64 | 2,56 | 4,04 |
3 | 61,9 | 50,2 | 3107,38 | 2520,04 | 3831,61 | 66,76 | -4,9 | 7,80 |
4 | 58,7 | 63,8 | 3745,06 | 4070,44 | 3445,69 | 57,51 | 1,13 | 1,90 |
5 | 57,0 | 60,8 | 3465,6 | 3696,64 | 3249 | 59,55 | -2,55 | 4,47 |
Итого | 313,6 | 281,1 | 17488,36 | 16010,17 | 19820,38 | 23,51 | ||
Среднее значение | 62,72 | 56,22 | 3497,672 | 3202,034 | 3964,076 | 4,7 | ||
σ | 5,5025 | 6,43 | ||||||
σ² | 30,2776 | 41,34 |
Дисперсия получается, по формуле
1
σy²=n∑(yi-y)²σy²=3964.076-62.72²=30.2776
σх²=3202.034-56.22²=41.3456
ух-у∙х
b= σ²x =(3497,672-62,72∙56,22)/41,3456=0,68а= у-b∙x=62,72+0,68∙56,22=100,9
уравнение регрессии ŷ=100,9-0,68х
ŷ1=100,9-0,68∙47,1=68,87
ŷ2=100,9-0,68∙59,2=60,64
ŷ3=100,9-0,68*50,2=66,76
ŷ4=100,9-0,68*63,8=57,51
ŷ5=100,9-0,68*60,8=59,55
Считаем линейный коэффициент парной корреляции
rху=b∙σx ∕ σy=0,68*6,43/5,5025=0,79 следовательно, связь сильная прямая
rху²=0.79²=0.62- коэффициент детерминации
Вариация результата на 62% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения ŷx и занесем их в таблицу. Найдем величину средней ошибки аппроксимации:
|yi-ŷxi|
Аi= yi *100%
А1=3,93/72,8*100%=5,3%А2=2,56/63,2*100%=4,04%
А3=|-4,9| / 61,9*100%=7,8%
А4=1,13/58,7*100%=1,9%
А5=|-2,55| /57,0*100%=4,47%
В среднем расчетные значения отклоняются от фактических на 4,7%
По каждому наблюдению вычислим величину отклонения. Полученные данные занесем в таблицу
У1-ŷ1=72,8-68,87=3,93
У2-ŷ2=63,2-60,64=2,56
У3-ŷ3=61,9-66,76=-4,9
У4-ŷ4=58,7-57,57=1,13
У5-ŷ5=57,0-59,55=-2,55
Рассчитываем F критерий
∑(ỹx-y)²/mr²xy
Fфакт== =0,62/(1-0,62)*(5-2)=4,89∑(y-ỹ)²/(n-m-1) 1-r²xy(n-2)
т.к Fтабл.α=0,05 =10,13 следовательно Fтабл>Fфакт отсюда следует, что гипотеза Но принимается. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.
ПОСТРОЕНИЕ СТЕПЕННОЙ РЕГРЕССИВНОЙ МОДЕЛИ
У=а*х предшествует процедура линеаризации переменных. Линеаризация производится путем логарифмирования обеих частей уравнения:
Lg y=lg a+b* lg x;
Y=C+b*X где
Y=lg y.,C= lg a., X= lg x
Табл.№3
№ п/п | Y | X | YX | Y² | X² | ŷx | yi-ŷx | (yi-ŷx)² | Ai |
1 | 1,86 | 1,67 | 3,1062 | 3,4596 | 2,7889 | 68,61 | 4,19 | 17,6 | 5,76 |
2 | 1,80 | 1,77 | 3,186 | 3,24 | 3,1329 | 60,24 | 2,96 | 8,76 | 4,68 |
3 | 1,79 | 1,70 | 3,043 | 3,2041 | 2,89 | 66,17 | -4,27 | 18,23 | 6,90 |
4 | 1,77 | 1,80 | 3,186 | 3,1329 | 3,24 | 57,72 | 0,98 | 0,96 | 1,67 |
5 | 1,76 | 1,78 | 3,1328 | 3,0976 | 3,1684 | 59,33 | -2,33 | 5,43 | 4,09 |
Итого | 8,98 | 8,72 | 15,654 | 16,134 | 15,22 | 50,98 | 23,1 | ||
Сред.знач | 1,796 | 1,744 | 3,1308 | 3,22 | 3,044 | 10,196 | 4,62 | ||
σ | 0,3010 | 0,05 | |||||||
σ² | 0,0906 | 0,0025 |
Рассчитаем σ:
1
σ²x= n ∑(хi-х)²=3,044-1,744²=0,00251
σy²= n ∑(yi-y)²=3,22-1,769²=0,0906вычислим значения С и b по формуле:
b= yx-y∙x =(3,1308-1,796*1,744)/0,0025= -0,5696
σ²x
С=Y-b∙X=1,796+0,5696*1,744=2,7894
Получим линейное уравнение Ỹ=2,7894-0,5696*Х, после потенцирования
2,7894 -0,5696 -0,5696
получим: ŷ=10 *х =615,7 *х
Подставляя в данное уравнение фактические значения х, получаем теоритические значения результата ŷx. По ним рассчитываем показатели: тесноты связи – индекс корреляции ρxy и среднюю ошибку аппроксимации Аi
2,7894
Ŷ1=10 *47,1=68,61
2,7894
Ŷ2=10 *59,2=60,24
2,7894
Ŷ3=10 *50,2=66,17
2,7894
Ŷ4=10 *63,8=57,72
2,7894
Ŷ5=10 *60,8=59,33 далее рассчитаем Аi
l (yi-ỹхi) А= n ∑ Аi = уi ∙100%А1=4,19/72,8*100%=5,76%
А2=2,96/63,2*100%=4,68%
А3=4,27/61,9*100%=6,90%
А4=0,98/58,7*100%=1,67%
А5=2,33/57,0*100%=4,09%
ρxy=√ l-(∑(yi-ŷх) ² ∕ (∑(y-yср)²=√ l-10,196/30,2776=0,81
определим коэффициент по формуле детерминации:
r²xy=(Pxy)²=(0,81)²=0,6561
Аi=4,62%
Характеристика степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.
ПОКАЗАТЕЛЬНАЯ РЕГРЕССИВНАЯ МОДЕЛЬ
Построению уравнения показательной кривой у=а ·bx предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:
Lg y=lg a+x*lgb
Y=C+Bx где,
Y=lg y., C=lg a., B=lgb
Табл.№4
№ п/п | Y | X | YX | Y² | X² | ŷx | yi-ŷx | (yi-ŷx)² | Ai |
1 | 1,86 | 47,1 | 87,606 | 3,4596 | 221,41 | 67,96 | 4,84 | 23,42 | 6,65 |
2 | 1,80 | 59,2 | 106,56 | 3,24 | 3504,64 | 60,18 | 3,02 | 9,12 | 4,77 |
3 | 1,79 | 50,2 | 89,858 | 3,2041 | 2520,04 | 65,87 | -3,97 | 15,76 | 6,41 |
4 | 1,77 | 63,8 | 112,926 | 3,1329 | 4070,44 | 57,45 | 1,25 | 1,56 | 2,12 |
5 | 1,76 | 60,8 | 107,008 | 3,0976 | 3696,64 | 59,22 | -2,22 | 4,92 | 3,89 |
Итого | 8,98 | 281,1 | 503,958 | 16,1342 | 16010,17 | 310,68 | 2,92 | 54,78 | 23,84 |
Сред.знач | 1,796 | 56,22 | 100,7916 | 3,2268 | 3202,034 | 4,77 | |||
σ | 0,037 | 6,4 | |||||||
σ² | 0,0012 | 41,34 |
Значения параметров регрессии А. и В составили: