Смекни!
smekni.com

Исследование моделей (стр. 2 из 3)

А= n ∑ у ∙100

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

∑(у-у)²= ∑(ỹх-у)² + ∑(у-ỹх)²,

где ∑(у-у)² общая сумма квадратов отклонений;

∑(ỹх-у)² сумма квадратов отклонений, обусловленная регрессией

∑(у-ỹхостаточная сумма квадратов отклонений.

Долю дисперсии , объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R²:

∑(ỹx-y)²

R²= ∑(y-y)²

Коэффициент детерминации- квадрат коэффициента или индекса корреляции.

F-mecm-оценивание качества уровнения регрессии- состоит в проверке гипотезы Ноо статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического

Fфакт и критического (табличного) Fтабл значений Fкритерия Фишера. Fфакт-

определяется из соотношения значений факторной и остаточной дисперсией, рассчитанных на одну степень свободы:

∑(ỹx-y)²/mr²xy

Fфакт== (n-2)

∑(y-ỹ)²/(n-m-1) 1-r²xy

n- число едениц совокупности;

m- число параметров при переменных х.

Fтабл- это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а

Уровень значимости а вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.

Если Fтабл< Fфакт то Но – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт , то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

УСЛОВИЕ

По пяти городам известны значения 2х признаков: табл.№1

город Средний доход сельхоз-хозяйств в % Средний прирост КРС
Красноярск 72,8 47,1
Брянск 63,2 59,2
Армавир 61,9 50,2
Ростов 58,7 63,8
Киев 57,0 60,8

Требуется:

1) для характеристики зависимости у от х рассчитать параметры следующих функций (линейной, степенной, показательной, равносторонней гиперболы).

2) оценить каждую модель через среднюю ошибку аппроксимации А и F- критерии Фишера.

ЛИНЕЙНАЯ РЕГРЕССИВНАЯ МОДЕЛЬ

Для расчета параметров а и b линейной регрессии у=а+b∙x ,решаем систему нормальных уравнений относительно а и b:

n∙a+b∙∑x=∑y

yx- y∙x

a∙∑x+b∙∑x²=∑y∙x получаем b= σ²x

табл.№2

№п/п у х ух ŷx у – ŷx Аi
1 72,8 47,1 3428,88 2218,41 5299,84 68,87 3,93 5,30
2 63,2 59,2 3741,44 3504,64 3994,24 60,64 2,56 4,04
3 61,9 50,2 3107,38 2520,04 3831,61 66,76 -4,9 7,80
4 58,7 63,8 3745,06 4070,44 3445,69 57,51 1,13 1,90
5 57,0 60,8 3465,6 3696,64 3249 59,55 -2,55 4,47
Итого 313,6 281,1 17488,36 16010,17 19820,38 23,51
Среднее значение 62,72 56,22 3497,672 3202,034 3964,076 4,7
σ 5,5025 6,43
σ² 30,2776 41,34

Дисперсия получается, по формуле

1

σy²=n∑(yi-y)²

σy²=3964.076-62.72²=30.2776

σх²=3202.034-56.22²=41.3456

ух-у∙х

b= σ²x =(3497,672-62,72∙56,22)/41,3456=0,68

а= у-b∙x=62,72+0,68∙56,22=100,9

уравнение регрессии ŷ=100,9-0,68х

ŷ1=100,9-0,68∙47,1=68,87

ŷ2=100,9-0,68∙59,2=60,64

ŷ3=100,9-0,68*50,2=66,76

ŷ4=100,9-0,68*63,8=57,51

ŷ5=100,9-0,68*60,8=59,55

Считаем линейный коэффициент парной корреляции

rху=b∙σx ∕ σy=0,68*6,43/5,5025=0,79 следовательно, связь сильная прямая

rху²=0.79²=0.62- коэффициент детерминации

Вариация результата на 62% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения ŷx и занесем их в таблицу. Найдем величину средней ошибки аппроксимации:

|yixi|

Аi= yi *100%

А1=3,93/72,8*100%=5,3%

А2=2,56/63,2*100%=4,04%

А3=|-4,9| / 61,9*100%=7,8%

А4=1,13/58,7*100%=1,9%

А5=|-2,55| /57,0*100%=4,47%

В среднем расчетные значения отклоняются от фактических на 4,7%

По каждому наблюдению вычислим величину отклонения. Полученные данные занесем в таблицу

У1-ŷ1=72,8-68,87=3,93

У2-ŷ2=63,2-60,64=2,56

У3-ŷ3=61,9-66,76=-4,9

У4-ŷ4=58,7-57,57=1,13

У5-ŷ5=57,0-59,55=-2,55

Рассчитываем F критерий

∑(ỹx-y)²/mr²xy

Fфакт== =0,62/(1-0,62)*(5-2)=4,89

∑(y-ỹ)²/(n-m-1) 1-r²xy(n-2)

т.к Fтабл.α=0,05 =10,13 следовательно Fтабл>Fфакт отсюда следует, что гипотеза Но принимается. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.

ПОСТРОЕНИЕ СТЕПЕННОЙ РЕГРЕССИВНОЙ МОДЕЛИ

У=а*х предшествует процедура линеаризации переменных. Линеаризация производится путем логарифмирования обеих частей уравнения:

Lg y=lg a+b* lg x;

Y=C+b*X где

Y=lg y.,C= lg a., X= lg x

Табл.№3

№ п/п Y X YX ŷx yi-ŷx (yi-ŷx)² Ai
1 1,86 1,67 3,1062 3,4596 2,7889 68,61 4,19 17,6 5,76
2 1,80 1,77 3,186 3,24 3,1329 60,24 2,96 8,76 4,68
3 1,79 1,70 3,043 3,2041 2,89 66,17 -4,27 18,23 6,90
4 1,77 1,80 3,186 3,1329 3,24 57,72 0,98 0,96 1,67
5 1,76 1,78 3,1328 3,0976 3,1684 59,33 -2,33 5,43 4,09
Итого 8,98 8,72 15,654 16,134 15,22 50,98 23,1
Сред.знач 1,796 1,744 3,1308 3,22 3,044 10,196 4,62
σ 0,3010 0,05
σ² 0,0906 0,0025

Рассчитаем σ:

1

σ²x= n ∑(хi-х)²=3,044-1,744²=0,0025

1

σy²= n ∑(yi-y)²=3,22-1,769²=0,0906

вычислим значения С и b по формуле:

b= yx-y∙x =(3,1308-1,796*1,744)/0,0025= -0,5696


σ²x

С=Y-b∙X=1,796+0,5696*1,744=2,7894

Получим линейное уравнение Ỹ=2,7894-0,5696*Х, после потенцирования

2,7894 -0,5696 -0,5696

получим: ŷ=10 *х =615,7 *х

Подставляя в данное уравнение фактические значения х, получаем теоритические значения результата ŷx. По ним рассчитываем показатели: тесноты связи – индекс корреляции ρxy и среднюю ошибку аппроксимации Аi

2,7894

Ŷ1=10 *47,1=68,61

2,7894

Ŷ2=10 *59,2=60,24

2,7894

Ŷ3=10 *50,2=66,17

2,7894

Ŷ4=10 *63,8=57,72

2,7894

Ŷ5=10 *60,8=59,33 далее рассчитаем Аi

l (yi-ỹхi)

А= n ∑ Аi = уi ∙100%

А1=4,19/72,8*100%=5,76%

А2=2,96/63,2*100%=4,68%

А3=4,27/61,9*100%=6,90%

А4=0,98/58,7*100%=1,67%

А5=2,33/57,0*100%=4,09%

ρxy=√ l-(∑(yi-ŷх) ² ∕ (∑(y-yср)²=√ l-10,196/30,2776=0,81

определим коэффициент по формуле детерминации:

r²xy=(Pxy)²=(0,81)²=0,6561


Аi=4,62%

Характеристика степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

ПОКАЗАТЕЛЬНАЯ РЕГРЕССИВНАЯ МОДЕЛЬ

Построению уравнения показательной кривой у=а ·bx предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Lg y=lg a+x*lgb

Y=C+Bx где,

Y=lg y., C=lg a., B=lgb

Табл.№4

№ п/п Y X YX ŷx yi-ŷx (yi-ŷx)² Ai
1 1,86 47,1 87,606 3,4596 221,41 67,96 4,84 23,42 6,65
2 1,80 59,2 106,56 3,24 3504,64 60,18 3,02 9,12 4,77
3 1,79 50,2 89,858 3,2041 2520,04 65,87 -3,97 15,76 6,41
4 1,77 63,8 112,926 3,1329 4070,44 57,45 1,25 1,56 2,12
5 1,76 60,8 107,008 3,0976 3696,64 59,22 -2,22 4,92 3,89
Итого 8,98 281,1 503,958 16,1342 16010,17 310,68 2,92 54,78 23,84
Сред.знач 1,796 56,22 100,7916 3,2268 3202,034 4,77
σ 0,037 6,4
σ² 0,0012 41,34

Значения параметров регрессии А. и В составили: