Нефтеперерабатывающий завод располагает двумя сортами нефти:
сортом А в количестве 10 единиц,
сортом В — 15 единиц.
При переработке из нефти получаются два материала: бензин (обозначим Б) и мазут (М).
Имеется три варианта технологического процесса переработки:
I: 1ед.А + 2ед.В дает 3ед.Б + 2ед.М
II:2ед.А + 1ед.В дает 1ед.Б + 5ед.М
III:2ед.А + 2ед.В дает 1ед.Б + 2ед.М
Цена бензина — 10 долл. за единицу, мазута — 1 долл. за единицу.
Определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.
Решение
"выгодность" -- получение максимального дохода от реализации продукции
"выбор (принятие) решения" состоит в определении того, какую технологию и сколько раз применить.
Обозначим неизвестные величины:
хi—количество использования i-го технологического процесса (i=1,2,3).
Остальные параметры модели (запасы сортов нефти, цены бензина и мазута) известны.
Для вектора х=(х1,х2,х3),
выручка завода равна (32х1+15х2 +12х3) долл.
Здесь 32 долл. — это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.).
Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего процессов.
Учет запаса нефти приводит к следующим условиям:
для сорта А:
для сорта В:
,где в первом неравенстве коэффициенты 1, 2, 2 — это нормы расхода нефти сорта А для одноразового применения технологических процессов I, II, III соответственно.
Математическая модель
Найти такой вектор х = (х1,х2,х3), чтобы
максимизировать f(x) =32х1+15х2 +12х3
при выполнении условий:
.Получили задачу линейного программирования.
Модель (1.4.2.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).
На дом
Пример. Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b.
Обозначим известные параметры задачи:
n — число разновидностей ценных бумаг;
аj — фактическая прибыль (случайное число) от j-го вида ценной бумаги
j — ожидаемая прибыль от j-го вида ценной бумаги.Обозначим неизвестные величины:
yj — средства, выделенные для приобретения ценных бумаг вида j.
По нашим обозначениям вся инвестированная сумма выражается как
Для упрощения модели введем новые величины
Таким образом, хi — это доля от всех средств, выделяемая для приобретения ценных бумаг вида j.
Ясно, что
Из условия задачи видно, что цель инвестора — достижение определенного уровня прибыли с минимальным риском.
Содержательно риск — это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией.
прибыли для ценных бумаг вида i и вида j. Здесь М — обозначение математического ожидания.
min
при ограничениях
Получили модель Марковица для оптимизации структуры портфеля ценных бумаг.
Модель (1.4.3.) является примеров оптимизационной модели стохастического типа (с элементами случайности).
Бройлерное хозяйство птицеводческой фермы насчитывает 20000 цыплят, которые выращиваются до 8-недельного возраста и, после соответствующей обработки, поступают в продажу. Хотя недельный расход корма для цыплят зависит от их возраста, в дальнейшем будем считать, что в среднем (за 8 недель) он составляет 1 фунт.
Для того чтобы цыплята достигли к восьмой неделе необходимых весовых кондиций, кормовой рацион должен удовлетворять определенным требованиям по питательности. Этим требованиям могут соответствовать смеси различных видов кормов, или ингредиентов. В качестве ингредиентов рассмотрим три: известняк, зерно и соевые бобы. Требования к питательности рациона сформулируем, учитывая три вида питательных веществ: кальций, белок и клетчатку. В таблице приведены данные, характеризующие содержание (по весу) питательных веществ в каждом из ингредиентов и удельную стоимость каждого ингредиента. Заметим, что известняк не содержит ни белка, ни клетчатки.
Смесь должна содержать:
1. не менее 0,8%, но не более 1,2% кальция;
2. не менее 22% белка;
3. не более 5% клетчатки.
Требуется определить для птицеводческой фермы количество (в фунтах) каждого из трех ингредиентов, образующих смесь минимальной стоимости при соблюдении требований к общему расходу кормовой смеси и ее питательности.
Решение
Введем следующие обозначения:
x1- содержание известняка (в фунтах) в смеси,
- содержание зерна (в фунтах) в смеси, - содержание соевых бобов (в фунтах) в смеси.В качестве (минимизируемой) целевой функции выступает общая стоимость смеси, определяемая по формуле
.Минимальный общий вес смеси, еженедельно расходуемой на кормление 20000 цыплят равен 20000 фунтов. Так как
, и представляют веса трех ингредиентов, используемых для составления смеси, то общий вес смеси будет равен , причем эта сумма не должна быть меньше 20000 фунтов.Теперь обратим внимание на требования, предъявляемые к смеси с точки зрения питательности. Так как общий расход кормов равен
, то содержание кальция должно находиться в пределах от 0,008 до 0,012 . В соответствии с таблицей исходных данных содержание кальция, обусловленное включением в смесь фунтов известняка, фунтов зерна и фунтов соевых бобов, равно . Отсюда следует, что ограничения, связанные с содержанием кальция в кормовом рационе, можно представить в следующем виде:1. смесь должна содержать не менее 0,8% кальция:
2. смесь должна содержать не более 1,2% кальция:
Эти ограничения можно записать в более простой форме, объединив в левых частях неравенств члены, содержащие
, и :Аналогично записываются условия по оставшимся питательным веществам.
Окончательная математическая формулировка задачи может быть представлена в следующем виде:
Промышленная фирма производит изделие, представляющее собой сборку из трех различных узлов. Эти узлы изготовляются на двух заводах. Из-за различий в составе технологического оборудования производительность заводов по выпуску каждого из трех видов узлов неодинакова. В приводимой ниже таблице содержатся исходные данные, характеризующие как производительность заводов по выпуску каждого из узлов, так и максимальный суммарный ресурс времени, которым в течение недели располагает каждый из заводов для производства этих узлов.