Смекни!
smekni.com

Использование методов линейного программирования и экономического моделирования в технологических процессах (стр. 1 из 3)

Задача 1

Нефтеперерабатывающий завод располагает двумя сортами нефти:

сортом А в количестве 10 единиц,

сортом В — 15 единиц.

При переработке из нефти получаются два материала: бензин (обозначим Б) и мазут (М).

Имеется три варианта технологического процесса переработки:

I: 1ед.А + 2ед.В дает 3ед.Б + 2ед.М

II:2ед.А + 1ед.В дает 1ед.Б + 5ед.М

III:2ед.А + 2ед.В дает 1ед.Б + 2ед.М

Цена бензина — 10 долл. за единицу, мазута — 1 долл. за единицу.

Определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Решение

"выгодность" -- получение максимального дохода от реализации продукции

"выбор (принятие) решения" состоит в определении того, какую технологию и сколько раз применить.

Обозначим неизвестные величины:

хi—количество использования i-го технологического процесса (i=1,2,3).

Остальные параметры модели (запасы сортов нефти, цены бензина и мазута) известны.

Для вектора х=(х123),

выручка завода равна (32х1+15х2 +12х3) долл.

Здесь 32 долл. — это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.).

Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего процессов.

Учет запаса нефти приводит к следующим условиям:

для сорта А:

для сорта В:

,

где в первом неравенстве коэффициенты 1, 2, 2 — это нормы расхода нефти сорта А для одноразового применения технологических процессов I, II, III соответственно.

Математическая модель

Найти такой вектор х = (х123), чтобы

максимизировать f(x) =32х1+15х2 +12х3

при выполнении условий:

.

Сокращенная запись:

Получили задачу линейного программирования.

Модель (1.4.2.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).


На дом

Пример. Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b.

Обозначим известные параметры задачи:

n — число разновидностей ценных бумаг;

аj — фактическая прибыль (случайное число) от j-го вида ценной бумаги

j — ожидаемая прибыль от j-го вида ценной бумаги.

Обозначим неизвестные величины:

yj — средства, выделенные для приобретения ценных бумаг вида j.

По нашим обозначениям вся инвестированная сумма выражается как

Для упрощения модели введем новые величины

Таким образом, хi — это доля от всех средств, выделяемая для приобретения ценных бумаг вида j.

Ясно, что


Из условия задачи видно, что цель инвестора — достижение определенного уровня прибыли с минимальным риском.

Содержательно риск — это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией.

прибыли для ценных бумаг вида i и вида j. Здесь М — обозначение математического ожидания.

Математическая модель

min

при ограничениях

Получили модель Марковица для оптимизации структуры портфеля ценных бумаг.

Модель (1.4.3.) является примеров оптимизационной модели стохастического типа (с элементами случайности).


Задача 2

Бройлерное хозяйство птицеводческой фермы насчитывает 20000 цыплят, которые выращиваются до 8-недельного возраста и, после соответствующей обработки, поступают в продажу. Хотя недельный расход корма для цыплят зависит от их возраста, в дальнейшем будем считать, что в среднем (за 8 недель) он составляет 1 фунт.

Для того чтобы цыплята достигли к восьмой неделе необходимых весовых кондиций, кормовой рацион должен удовлетворять определенным требованиям по питательности. Этим требованиям могут соответствовать смеси различных видов кормов, или ингредиентов. В качестве ингредиентов рассмотрим три: известняк, зерно и соевые бобы. Требования к питательности рациона сформулируем, учитывая три вида питательных веществ: кальций, белок и клетчатку. В таблице приведены данные, характеризующие содержание (по весу) питательных веществ в каждом из ингредиентов и удельную стоимость каждого ингредиента. Заметим, что известняк не содержит ни белка, ни клетчатки.

Смесь должна содержать:

1. не менее 0,8%, но не более 1,2% кальция;

2. не менее 22% белка;

3. не более 5% клетчатки.

Требуется определить для птицеводческой фермы количество (в фунтах) каждого из трех ингредиентов, образующих смесь минимальной стоимости при соблюдении требований к общему расходу кормовой смеси и ее питательности.

Решение

Введем следующие обозначения:

x1- содержание известняка (в фунтах) в смеси,

- содержание зерна (в фунтах) в смеси,

- содержание соевых бобов (в фунтах) в смеси.

В качестве (минимизируемой) целевой функции выступает общая стоимость смеси, определяемая по формуле

.

Минимальный общий вес смеси, еженедельно расходуемой на кормление 20000 цыплят равен 20000 фунтов. Так как

,
и
представляют веса трех ингредиентов, используемых для составления смеси, то общий вес смеси будет равен
, причем эта сумма не должна быть меньше 20000 фунтов.

Теперь обратим внимание на требования, предъявляемые к смеси с точки зрения питательности. Так как общий расход кормов равен

, то содержание кальция должно находиться в пределах от 0,008
до 0,012
. В соответствии с таблицей исходных данных содержание кальция, обусловленное включением в смесь
фунтов известняка,
фунтов зерна и
фунтов соевых бобов, равно
. Отсюда следует, что ограничения, связанные с содержанием кальция в кормовом рационе, можно представить в следующем виде:

1. смесь должна содержать не менее 0,8% кальция:

2. смесь должна содержать не более 1,2% кальция:


Эти ограничения можно записать в более простой форме, объединив в левых частях неравенств члены, содержащие

,
и
:

Аналогично записываются условия по оставшимся питательным веществам.

Окончательная математическая формулировка задачи может быть представлена в следующем виде:

Задача 3

Промышленная фирма производит изделие, представляющее собой сборку из трех различных узлов. Эти узлы изготовляются на двух заводах. Из-за различий в составе технологического оборудования производительность заводов по выпуску каждого из трех видов узлов неодинакова. В приводимой ниже таблице содержатся исходные данные, характеризующие как производительность заводов по выпуску каждого из узлов, так и максимальный суммарный ресурс времени, которым в течение недели располагает каждый из заводов для производства этих узлов.