Смекни!
smekni.com

Економіко–математичне моделювання (стр. 2 из 17)

Не дивлячись на великий історичний період розвитку математичного моделювання економіки проблема побудови економіко-математичних моделей далека від остаточного рішення: існують різні моделі одного і того ж об'єму, відсутня єдина методологічна база, не завжди надійна перевірка на адекватність. Все більше дослідників замислюються про необхідність інвентаризації накопичених економіко-математичних моделей, створенню; належним чином систематизованого довідника по моделях реальної економіки. До витрат економіко-математичного моделювання слід віднести і можливість під будь-який економічний план формально створити макроекономічну модель. Математичною мовою можуть бути записані як наукові теорії, так і помилкові концепції, що також треба мати у вигляді.

Тому у взаємовідношенні економічного початку і математичного в реальній економічній ситуації треба завжди пам'ятати, що математика лише інструментарій в руках економіста-дослідника, і аналіз подібних явищ повинен носити змістовний, а не формальний характер.


1.1.2. Економіко-математичні методи і моделі в працях зарубіжних дослідників

Економіко-математичні методи, математична економіка і економетрія, що розуміється як набір статистичних методів для нагляду за ходом розвитку економіки, її аналізу і прогнозів, пройшли тривалий шлях свого розвитку.

Економетрія (разом з мікроекономікою і макроекономікою) входить в основу сучасного утворення дослідника-економіста. Економісти часто по різному визначають поняття економетрії. Так, академік В.Л. Макаров, директор Центрального економ і ко-математичного інституту РАН вважає, що в протилежність до економічної теорії, яка займається причинно-наслідковими зв'язками, економетрія займається зв'язками без виявлення їх причин. „основна задача економетрія - наповнити емпіричним змістом апріорні економічні міркування” (Клейн).

Тим часом, економетрія не могла бути належним чином розвинена, починаючи з роботами її основоположника У. Петі (1623-1627), до тих пір, поки не одержали належного розвитку теорія вірогідності і математична статистика. Перші ідеї, з яких згодом і оформилися ці дисципліни, грунтувалися на міркуваннях теорії азартних ігор (Кардано, Ферма, Паскаль і ін.). Закон великих чисел, доведений у вигляді теореми Якобом Бернуллі (1654-1705), був першим теоретичним обгрунтовуванням накопичених раніше фактів. Теорія вірогідності стає стрункою математичною наукою лише в XIX-XX століттях з появою основоположних праць П. Л. Чебишева, а також. А. Маркова, A.M. Ляпунова і потім С.Н. Бернштейна, А.Н. Колмогорова. По суті лише в роботах А. Н. Колмогорова, якими був закладений аксіоматичний фундамент в підставу дисципліни, теорія вірогідності придбаває таку ж Евклідову строгість, як і диференціальне і інтегральне числення.

Тим самим, економетрія в її нинішньому розумінні є в деякому розумінні вершиною тривалого розвитку економіко-математичної ідеї, що використовує новітні досягнення математичної науки.

Тим часом, математична сторона економіко-математичної ідеї має власні корені.

Математика як така зародилася з практичних потреб рахунку, числення часу, вимірювання ділянок і об'ємів судин. Накопичення фактичного матеріалу йшло по шляху розвитку уявлень про числа і фігури, створення усної і письмової системи числення, виникнення зачатків арифметики і геометрії. Вважаючи Евкліда основоположником побудови математичної теорії „від аксіом до висновків” слід зазначити, що уявлення про аксіоматичний метод з'явилися задовго до Евкліда. Так, попередниками Евкліда в аксіоматичному методі є, зокрема, Гіппократ, Платон і Арістотель. В той же час „Початку” Евкліда з'явилися зразком побудови будь-якої змістовної теорії і стали еталоном. В геометрії Евкліда постулюються (аксіоматизуються) накопичені тисячоліттями геометричні знання. Таке розуміння аксіоматизації одержало назву змістовного (інтуїтивного) і лише в XIX столітті мав місце перехід до формального розуміння аксіоматичного методу, коли була відкрита неевклідові геометрія. Саме з появою неевклідових геометрії зрозуміла можливість створення математичних теорій шляхом правильно виконаної абстракції від обмежень, що накладалися раніше. У зв'язку з виниклим питанням про несуперечність нових аксіоматичних теорій (зокрема, неевклідових геометрії) виникло питання про побудову конкретної моделі, на якій та або інша аксіоматика реалізується. В роботах західних дослідників Бельтрамі, Клейна і Пуанкаре і був повністю досліджено питання про несуперечність неевклідових геометрії.

Академік А.И. Колмогоров розділяє всю історію математики на чотири періоди: періоди зародження математики, елементарної математики, математики змінних величин і сучасної математики.

Період елементарної математики (від VI в. до н.е. по XVI в. включно) починається з приведення накопичених знань в систему і характеризується в основному успіхами у вивченні постійних величин. Цей період закінчується початками вивчень процесів руху.

Період математики змінних величин (XVII-XIX століття) починається з аналітичної геометрії Декарта і вивчення змінних величин в працях И. Ньютона і Р. Лейбніца. В математику міцно входить виказана ще стародавніми греками ідея безперервності, і створюються математичні методи вивчення руху.

Період сучасної математики (середина XIX століття і до теперішнього часу) характеризується украй широким розгалуженням математики. Д. Гільберт, в докладі на міжнародному математичному конгресі 1900 р. відзначив: „... чи осуджена математика на загибель подібно іншим наукам, що розділилися на окремі галузі, представники яких ледве розуміють один одного, і зв'язок між якими стає все більш слабким?...я не вірю в це і не бажаю цього. Математична наука, в моєму розумінні, є неподільне ціле, організм, життєвість якого обумовлена зв'язком його частин... нам ясна схожість логічних апаратів, взаємозв'язок ідей в математиці як в цілому і численні аналогії між її різними областями... радісно, що з розвитком математики її органічний характер не тільки не втрачається, але і виявляється ще більш ясно.., чим далі розвивається математична теорія, тим більше гармонійно і однорідно розвивається її конструкція і відкриваються безперечні зв'язки між далекими до того областями науки”.

На жаль, час вносить свої корективи, і на рубежі тисячоліть, не дивлячись на всі спроби повторити і поповнити прогнози Гільберта, більш менш стрункого і повного аналога не вийшло. Поширена думка, що з відходом А.Н. Колмогорова в світі не залишилося математика, здатного розуміти співтовариство своїх колег, що неймовірно розширилося, що не так вже і недивно, якщо врахувати, що експоненціальне зростання кількості інформації перевершує фізіологічні здібності людського мозку до нарощування осмисленої інформації.

Розуміння того факту, що якісне використовування напрацьованого століттями економіко-математичного апарату неможливе без аналізу і розуміння витоків його виникнення і основних віх розвитку, приводить до необхідності дослідження в повній відповідності з принципом системності: від перших дослідів побудови математичних моделей в економіці до їх сучасного стану.

Побудова математичних моделей в суспільних науках має, ймовірно, корені у використовуванні фізичних аналогій при вивченні соціальних процесів - соціальна фізика XVII-XVIII ст. Так, Спіноза вважав, що люди один одного відштовхують через фізичний закон, навпаки, Г. Гроцій вважав, що має місце зворотне тяжіння людей один до одного. О. Фур’є в своєму „Вченні про пристрасті” вважав атрибутом (невід'ємною частиною) людини його прагнення до об'єднання в групи, що визначається психологічними чинниками. Поведінкові теорії в своїх спробах пояснити ті або інші процеси в соціальному ареалі шукали аналогії в тваринному світі. Так, в політиці на базі теорії біхейвіорізму з'явився напрям „біхейвіоралізм”. Поняття функції корисності сходить в своєму розвитку до статті Д. Бернуллі від 1738 р., а перша спроба кількісно описати національну економіку належить французькому економісту Ф. Кене (1694-1774).

Сам термін „економіко-математичні методи і моделі” з'явився лише в XX столітті. До цього економіко-математична наука розвивалася лише в рамках політичної економії, а пізніше в рамках чистої економічної теорії. Термін „політична економія” був введений у Франції в 1614 р. Антуаном де Монкретьеном і позначав науку про державне господарство, про економіку національних держав. Політична економія розглядалася А.Смітом як галузь знання, необхідна державному діячу і законодавцю, як наука „про збагачення як народу, так і держави”.

З моменту виходу книги англійського економіста Альфреда Маршалла „Принципи економіки” в 1890 р. з'являється термін „економічна теорія”, що розуміється як суспільна наука, що вивчає поведінку людей в процесі виробництва, обміну і споживання благ і послуг. Термін „політична економія” зберігся лише в тій частині економічної теорії, яка торкається ролі в регулюванні економіки.

Перша кількісна модель економіки, належна Франсуа Кене (1694-1774), містила зачатки таких майбутніх теорій як теорія ринку, модель мультиплікатора, теорія економічної динаміки і т.п.