З другого боку, зважаючи на нерівність
Зіставляючи (7) і (8), одержуємо:
і нерівність (З) доведена з постійною:
Доведемо тепер достатність. Хай для послідовності {nk} справедлива нерівність (3) всякий раз, коли число р і поліном R(x) вибрано в відповідності з умовою теореми. Доведемо, що всяка функція:
належатиме і простору
Хай спочатку f(x) - поліном і хай:
З рівності (4) виходить, що:
Використовуючи (3) і (10), маємо:
Нерівність (11), будучи виконано для фіксованої функції
(11) буде виконано і для будь-яких функцій f(x) вигляду
Теорема 2. Хай
справедлива нерівність:
Назад, якщо для послідовності {nk} існує постійна С > 0, така, що для будь-кого натурального р = 2n і будь-якого полінома:
справедлива оцінка (12), то послідовність
Доведення. Доведемо спочатку необхідність.
Хай:
Утворюємо множину:
Хай далі:
Оцінимо
Помітимо тепер, що на інтервалі
Хай:
Тоді, як відомо:
якщо
і в силу (13):
Якщо у визначенні функції f(х) покласти:
то нерівності (13) і (14) звернуться в рівність.
Для такої функції маємо в силу (14) і умови теореми:
звідки:
або:
що і доводить необхідність теореми.
Доведемо тепер достатність. Хай для послідовності {nk} справедлива нерівність (12) при будь-кому р=2n і поліномі:
або
Тоді для полінома:
і множини:
справедлива оцінка (14), тобто:
Через умову теореми права частина нерівності (15) не перевершує величини:
тобто:
Оцінка (16), будучи справедлива для простих множин Е з умовою
умова
всіх
Теорема повністю доведена.
Наступні два кількісні результати торкаються густини лакунарних послідовностей Уолша і розподілу значень іденпотентних поліномів (терезів лінійних кодів). Ці оцінки представляють як самостійний інтерес (перша з них значно усилює аналогічний результат А. Бонами так і можуть мати додаток в загальній математичній теорії кодування Л передачі інформації.
Теорема 3. Хай Еn n-мірне лінійний простір над полем з двох елементів.
Тоді безліч U всіх пар вигляду (а, а-1), де
Доведення. Допустимо осоружне, тоді знайдуться такі 4 різний елемента а, b, c, d з U, що:
Остання система еквівалентна системі:
а + b = c + d, a-l + b-1 = с-1 + d-1.
що рівносильне:
а + b = c + d, ab = cd
яка, як неважко бачити, може мати не більше одного рішення (з точністю до перестановки). Дійсно, останнє твердження рівносильне тверждення про те, що рівняння х(х + k)= r має не більше двох різних розв’язків по х для х, k, r з Еn. Покажемо це. Хай є інше рішення у: у(у + k) =r.
Тоді